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ABSTRACT 
 

Bone Marrow Microenvironment regulation of BCL6 in  

Acute Lymphoblastic Leukemia 

William L Slone 

Acute lymphoblastic leukemia (ALL) is a hematological malignancy with 

approximately 6000 newly diagnosed cases every year. Although ALL is the most 

common malignancy in children, it can occur in patients of all ages. Great strides have 

been made in the treatment of ALL and remission rates are at all-time highs. However, 

relapse rates have remained relatively consistent, and relapse continues to be 

correlated with a poor prognosis in patients with ALL. As the site of origin and 

progression of ALL, the bone marrow microenvironment (BMM) is important in 

regulating tumor cell quiescence and proliferation. Of clinical relevance is the frequency 

with which quiescent leukemic cells survive treatment, initiate proliferation, and 

contribute to relapse of aggressive disease. In order to design innovative therapies, a 

better understanding of the mechanisms by which this regulation occurs is needed.  

In order to investigate the mechanisms of BMM mediated protection, and to 

develop innovative targeted strategies to disrupt it, in vitro co-culture models remain 

critical. Classically, co-culture models that include hematopoietic cells have only 

investigated the tumor population as a whole, without regard for potential different 

phenotypes based on location of the leukemic cell relative to the adherent BMM cells. In 

the first study (Chapters 2 and 3), we investigated whether ALL cells have a variance in 

phenotype based on their spatial location within the co-culture. Utilizing bone marrow 

stromal cells (BMSC) and human osteoblasts (HOB) as representative elements of the 
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BMM, in culture with ALL cells, we found that ALL cells form three distinct populations 

relative to the BMSC or HOB. ALL tumor cells that migrated beneath the stromal layer, 

referred to as phase dim (PD), were characterized by a quiescent and chemotherapy 

resistant phenotype. Cell labeling experiments demonstrated that the co-culture model 

was dynamic and that ALL cells readily transitioned between populations relative to the 

adherent BMM cells. Furthermore, co-culture studies using non-bone marrow derived 

adherent layers found that while these co-cultures supported formation of a PD 

population, they did not protect ALL cells from chemotherapy exposure. These results 

suggest that the increased chemotherapy resistance seen in the PD population is 

specific to the crosstalk between ALL cells and the BMSC or HOB.  PD ALL cells were 

also seen to have an altered metabolic profile, which may contribute to their increased 

resistance to chemotherapy. Additionally, we provide a written and video protocol for the 

isolation of the three ALL populations from the stromal adherent layers. This extension 

of the standard co-culture model will provide researchers a more biologically relevant 

method to investigate resistant ALL disease in the context of BMM derived support.          

In the final study (Chapter 4), data suggest that microenvironment regulation of 

BCL6 in leukemic cells is one factor involved in the transition between the proliferative 

and quiescent states of ALL. Observations utilizing Bcr-Abl negative (Ph-), positive 

(Ph+) ALL cell lines, and primary patient samples suggest that tumor cell BCL6 protein 

expression is decreased due to BMSC and HOB derived signals. Leukemic cells with 

decreased BCL6 are characterized by diminished proliferation, G0 accumulation, and 

chemotherapy resistance. Conversely, removal of ALL cells from marrow-derived 

stroma results in leukemic cells with increased BCL6 expression that are proliferative 
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and sensitive to chemotherapy. Chemical inhibition or knock-down of BCL6 by shRNA 

in ALL cells results in diminished proliferation reminiscent of the quiescent tumor cells 

supported by the marrow microenvironment which are chemotherapy resistant and 

contribute to relapse of disease. We have developed a unique in vitro recovery model to 

test chemotherapy protection of tumor in this unique niche. BMSC/HOB co-cultured 

tumor cells are exposed to chemotherapy, and subsequently allowed to recover from 

drug imposed insult to determine factors important to tumor survival and repopulation. 

While down regulation of leukemic BCL6 leads to a quiescent phenotype, surviving 

leukemic cells released from microenvironment constraint have increased BCL6 

expression and undergo a period of aggressive proliferation. Since many chemotherapy 

regimens require tumor cell proliferation for optimal efficacy, we investigated the 

consequences of forced BCL6 expression in leukemic cells when in the protective 

microenvironment niche. Data suggest that forcing leukemic cells to express BCL6 

when co-cultured with BMSC or HOB sensitizes the tumor to chemotherapy induced cell 

death. Furthermore, pre-treatment with drugs that increase BCL6 expression such as 

the proteasome inhibitor MG132 or the ATM pathway inhibitor caffeine sensitize 

microenvironment protected ALL cells to chemotherapy treatment. These data suggest 

that BCL6 is one factor, modulated by microenvironment derived cues that may 

contribute to regulation of ALL cell cycle progression and subsequently therapeutic 

response.  

The overall goal of the studies presented herein was to provide a platform to 

investigate treatment resistant ALL that is due to BMM support through the use of our in 

vitro co-culture model. Additionally, through the use of this model we are able to 
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demonstrate mechanistic changes, which can lead to chemotherapy resistance such as 

downregulation of BCL6 in ALL subsequent to BMM interaction. These studies provide 

mechanistic insight that will contribute to the design of novel treatment strategies that 

disrupt protective microenvironment signaling, with a goal of increased chemotherapy 

efficacy and less intensive therapies for ALL patients.  With a primary goal of reducing 

the frequency of relapse, a critical secondary advantage would be the reduction of long-

term effects from cytotoxic therapies and potential reduction of treatment induced 

secondary malignancies.   
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2 
 

Acute Lymphoblastic Leukemia 
 

 Acute lymphoblastic leukemia (ALL), also known as acute lymphocytic leukemia, 

is a malignancy that arises from uncontrolled proliferation of abnormal immature 

lymphocytes in the absence of differentiation.  Typically, this disease initiates and 

progresses in the bone marrow. Due to its aggressive or “acute” nature, ALL 

progression rapidly leads to damage or loss of normal hematopoiesis and eventual 

systemic damage as the immature lymphocytes infiltrate the blood stream and other 

organs. It is estimated that there are 6000 new cases of ALL yearly1,2. ALL tends to be 

more common in Caucasians and is more prevalent in males than females at a ratio of 

3:11,2. ALL most commonly occurs in children with 60% of patients being younger than 

21 years old and peak incidence between 2-5 years of age1,2. Remission rates for 

childhood ALL approach 90%, however infants 12 months of age or less and adults over 

16 as the age have a worse overall prognosis1–3. Modern chemotherapy regimens, 

which will be discussed later, have greatly improved patient outcomes; however, 

leukemia in general has a long documented history and only in the last century has the 

medical and research community began to make strides in the treatment of this 

previously consistently fatal disease. 

ALL historical perspective 
 

 To understand modern ALL treatment regimens, and to consider future 

therapeutic strategies, it is important to look at the historical development of early 

treatments. While ancient Greek texts describe a disease of the blood which has 

characteristics of leukemia as we recognize it today, the first work that lead to leukemia 
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being classified as its own clinical entity took place in the early 1800s4,5. Before these 

works, many physicians considered what we know today as leukemia to be secondary 

to an unknown infection leading to “pus” in the blood. These physicians understood that 

infections of the skin resulted in pus production, though they did not yet appreciate that 

pus was actually white blood cells4,5. The advent and improvements in microscope 

technology allowed for the visualization of the blood and the first accurate descriptions 

of white blood cells4. This leap in technology positioned physicians such as Bennett, 

Donne and Virchow to piece together that the disease they were observing was a 

separate disease of the blood that caused the blood to appear white, which led to the 

disease being termed leukemia4,5. In 1865, Lissauer described the first known treatment 

for leukemia, which relied on the use of an arsenic solution4. Arsenic solutions were 

standard of care to be followed by use of x-rays and early attempts at blood 

transfusions4.  These treatments continued to be used as treatments for all forms of 

leukemia into the 1900s, without any long term benefit to patients, and leukemia 

continued to be considered incurable. World Wars I and II brought about research 

involving mustard gas derivatives. In the United States, Gilman and Philips observed 

that certain nitrogen mustard gas compounds had an impact on lymphoid tissues6. One 

of the first mustard gas derivatives shown to have efficacy against hematologic 

malignancies was methyl-bis-(β-chloroethyl) amine, following clinical trials at Yale 

University4. These findings were follow by the work of Sidney Farber and others, on 

anti-folate treatments using the aminopterin7,8. The use of folic acid antagonists, which 

are now known to function through disruption of DNA synthesis, provided some of the 

first temporary remissions in children9,10. Farber along with Yellapragada Subbarow 
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expanded upon these works with the development of methotrexate, which functions as 

an antimetabolite resulting in depletion of activated folates needed for DNA synthesis4.  

These advances began to improve patient outcomes and lead to some of the first large 

scale clinical trials. Of note, in the treatment of ALL are the three cooperative children 

patient groups; Acute Leukemia Group A (eventually Children’s Cancer Group [CCG]), 

Acute Leukemia Group B (which became Cancer and Leukemia Group B [CALGB]), 

Southwest Cancer Chemotherapy Study Group (which evolved into the Southwest 

Oncology Group [SWOG])11. These patient groups were used to test the efficacy of the 

newly derived anti-folate, methotrexate, and mustard gas derivatives. Also, a critical 

discovery of these research studies was that they established the first combination 

therapy strategies, which continue to be critical to successful treatment outcomes in 

patients10–12. These studies mark a turning point in the treatment of ALL as they 

provided the first successful curative treatments. During these clinical group trials, 

vincristine was discovered as a possible treatment due to its myelosuppressive effect 

and in combination with prednisone and l-asparginase, these agents were added to the 

treatment arsenal which lead to increased and lengthened remission rates11.  In the 

1960s, prophylactic treatment of the central nervous system (CNS) began, which further 

improved outcomes by minimizing the likelihood of relapse of disease that can occur in 

this protected anatomical location10,11,13.  The use of combination treatments and 

prophylactic CNS treatment resulted in ALL cure rates approaching 50% by the 1970s11. 

These successes resulted in further research leading to risk based treatment strategies, 

as well as the use of human leukocyte antigen (HLA) matched bone marrow transplant, 

further increasing the survival rate for patients with ALL10,11.  
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Modern ALL management   
 

On the backs of the fundamental work described above, modern treatment 

strategies result in greater than 90% of ALL patients achieving remission1. As was first 

discovered with the cooperative children groups of the 1950s, the key to current 

treatment has been further optimization of treatment regimens as a majority of today’s 

chemotherapy drugs for the treatment of ALL were discovered prior to the 1970s. 

Today’s treatments typically consist of three treatment phases which take place over a 

2-2.5 year time frame 1,3,14.  Treatment phases for ALL are induction, consolidation, and 

maintenance. Induction therapy typically consists of treatment with some combination of 

vincristine, cytarabine, dexamethasone, prednisone, doxorubicin, daunorubicin, or a 

similar anthracycline drug1,3,14.  Induction therapy is followed by consolidation, which is 

typically retreatment with high doses of induction therapy drugs1,3,14. Maintenance 

therapy follows consolidation treatments and typically consists of treatment regimens 

containing methotrexate and 6-mercaptopurine. In addition, consolidation treatments 

may be combined with other drugs such as vincristine or prednisone, as well as 

specifically targeted drugs such as tyrosine kinase inhibitors ( i.e imatinib, dasatinib, and 

nilotinib) 1,3,14.  Increased awareness and tools for determination of genetic alterations, 

and their subsequent use for more informed risk stratification, along with combination 

treatment strategies has combined to greatly improve patient outcomes. These 

treatment approaches have advanced patient outcomes to all-time highs, with children 

having an overall complete remission rate between 90- 96% and adults ranging from 80 

to 90% complete remission1–3,14. While these complete remission rates are extremely 
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encouraging, relapse of ALL remains a significant issue that often leads to aggressive 

disease and poor outcomes.  

Relapse of ALL  
 

 Modern chemotherapy regimens have greatly increased the number of complete 

remission in both children and adults suffering from ALL. Relapse of ALL occurs in 20 to 

25% of children and greater than 50% of adult cases of ALL15–19. In both patient 

populations, relapse of ALL has a poor prognosis with long term survival of children with 

a relapse event ranging from 15 to 50%, and similar or worse outcomes in adults3,14–16. 

Relapse of ALL can arise from a number of anatomical locations with the most common 

sites being the bone marrow, CNS and testis20. Although these are the most common 

sites of ALL relapse, extramedullary relapses have been observed to arise from the iris, 

ovaries, and skin21. Though ALL relapse can arise from any of these sites, bone marrow 

relapses are the most common and confer the worst prognosis as detailed below. 

  While genetic mutations such as BCR-Abl or MLL+ rearrangements play a 

critical role in the progression and likelihood of relapse22, two fundamental 

characteristics of ALL relapses, length of initial remission and site of relapse, are the 

most important predictors of long term survival of ALL patients20,23.  Length of remission 

has been found to be the most significant predictor of overall survival and is commonly 

stratified into three categories early (< 18 months), intermediate (18 to 36 months), and 

late relapse (>36 months) with early relapse events having a poor prognosis compared 

to longer remission duration23. Work by Nguyen et al. and others has also shown that 

the site of relapse is also an indicator of long term survival.  As noted previously, the 

sites of relapse vary with bone marrow relapses having the worst prognosis compared 
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to relapses arising in the CNS, testis, or other organs20,23.  Long term survival of 

patients who suffer an early bone marrow relapse has a range from 0-15%, intermediate 

medullary relapse ranges from 10 to 40%, late bone marrow range is 14- 50%23. This is 

compared to CNS relapses which have a long term survival rate of approximately 51% 

and isolated testicular relapses that range from 53 to 84%23. Together these 

observations highlight the need for further research to improve outcomes in patients 

with relapse by investigating strategies that promote longer remissions. This requires a 

mechanistic understanding of the bone marrow microenvironment’s contribution to 

resistance and progression of ALL disease.  

Bone marrow microenvironment contributions to ALL chemotherapy resistance   

 

 To fully understand bone marrow microenvironment (BMM) facilitation of  ALL 

progression and contribution to chemotherapy resistance, it is important to appreciate 

the supportive role the BMM plays in normal hematopoiesis, the “healthy” counterpart of 

leukemia, as they respond to many of the same development cues. Neumann and 

Bizzozero first postulated that the bone marrow was the site of red blood cell production 

in the late 1800s24. Works by Osler elaborated upon Neumann and Bizzozero’s work to 

conclude that the bone marrow was an organ with the primary function of producing all 

cellular components of the blood24. Today it is understood that the bone marrow is a 

complex organ that consists of specific microenvironment niches that function to 

regulate hematopoiesis. Furthermore, research continues to determine the functional 

role of individual niches within the bone marrow. It is widely accepted that two niches, 

the endosteal and the perivascular niche, are critical for normal maintenance and 

development of both immature and mature blood cells.  However, their specific 
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contributions to white blood cell development is still currently being debated.  The 

complexity of this anatomical site drives the need for careful consideration of model 

development, realizing that while some elements (osteoblasts and stromal cells) may 

have overlapping roles, there are likely very specific contributions to steady state 

hematopoiesis, and support of leukemic disease as well.  

Osteoblastic niche 

 

The endosteal or osteoblastic niche, is localized near the inner bone surface or 

endosteum. This niche is comprised of a variety of cell types which include; osteoblasts, 

osteoclasts, glial non-myelinating Schwann cells, and regulatory T-cells (T-regs) (Figure 

1, 2)25,26. One key component of this niche is osteoblasts, which in coordination with 

osteoclasts have been classically described to maintain bone homeostasis27,28. In 

addition to the role in bone homeostasis, osteoblasts have been shown in both in vitro 

and in vivo studies to regulate hematopoietic stem cells (HSC), as well as progenitor 

hematopoietic cell proliferation and differentiation26,29–32. One classic example is 

osteoblast mediated Notch signaling which has been shown to regulate HSC 

proliferation, self-renewal, and prevention of HSC differentiation31,33. Furthermore, 

osteoblast derived growth factors such as granulocyte colony-stimulating factor can be 

used to promote HSC expansion in vitro and loss of osteoblasts in vivo results in 

decreased abundance of HSCs29,30,34.  Additionally, osteoblast production of 

Angiopoietin-1 (Ang-1), N-cadherin signaling, and osteopontin appear to promote HSC 

quiescence and are hypothesized to maintain the HSC pool preventing stem cell 

exhaustion35–37. Due to osteoblast’s propensity to promote hematopoietic cell 

phenotypes that promote self-renewal and quiescence, it is of little surprise that 
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malignant immature hematopoietic cells also invade this niche to take advantage of 

these “protective” signaling cues. For this reason, we and others have interrogated the 

signaling that occurs in this site and demonstrated that leukemic cell interaction with 

osteoblasts promotes a chemotherapy resistant phenotype38–41. Similar to observations 

that have been described for normal HSC, adhesion of ALL cells to ostopontin in the 

osteoblastic niche promoted a dormant phenotype and subsequently facilitated 

chemotherapy resistance38. Likewise, Saito et al demonstrated in an acute 

myelogenous leukemia (AML) mouse model that CD34+CD38− human primary AML 

stem cells localized to the endosteum, where they exhibited a chemotherapy resistant 

quiescent phenotype42. These observations together illustrate the protective nature of 

the osteoblastic niche and are the bases for our investigations into the role this niche 

plays in promotion of ALL resistance, which will be further discussed below.  

Perivascular niche     

  

Like the osteoblastic niche, there is a wealth of evolving research demonstrating 

the impact of the perivascular niche on normal and leukemic physiology. The 

perivascular niche is localized at the sinusoidal and arteriole walls, and this niche has 

been shown to be made up of C-X-C motif chemokine-12 (CXCL12)-abundant reticular 

cells (CAR), endothelial cells, nestin-positive (NES+) mesenchymal stromal cells 

(MSCs), leptin receptor positive [LepR(+)] perivascular stromal cells, and non-

myelinating Schwann cells (Figure 1, 2)25,26. The perivascular niche has been described 

to promote both proliferative and quiescent HSC phenotypes, and research continues to 

delineate the local niches that are responsible for these different states. For example, 

non-myelinating Schwann cells that are part of both the osteoblastic niche and the 
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perivascular niche have been reported to activate transforming growth factor-β1 (TGF-

β1), which supports HSC quiescence43,44.  On the other hand, expression of Notch 

ligands Jagged-1, Jagged-2, and Delta-like-1 &4 increased self-renewal of HSCs in 

vitro25,45.  Even among the same stromal cell population, localization and protein 

expression profiles can dramatically alter impacts on HSCs. This was demonstrated by 

Kunisaki et al using NES+ MSCs segregated into high nestin phenotype verses those 

with lower nestin expression46. Not only did this group show that nestin high and nestin 

low MSCs localize to different perivascular niches (arteriolar vs. sinusoidal respectively), 

they displayed that the arteriolar nestin high MSC promoted HSC quiescence compared 

to the cell cycle active HSCs which localized to areas with nestin low MSCs46. These 

examples illustrate the heterogeneity of the “classic” perivascular niche and suggests 

that this one niche may, in fact, be two unique niches (arteriolar verses sinusoidal). 

More generally this heterogeneous population of stromal cells and MSCs has been 

defined as “bone marrow stromal cells” (BMSC). BMSC have been shown to maintain 

HSC homeostasis through impacting HSC and progenitor cell proliferation, self-renewal, 

differentiation, and homing properties26,47–50. BMSC expression of CXCL12, as well as 

signaling lymphocyte attractant molecule (SLAM) proteins, are important to retention of 

HSC and progenitor lymphocytes respectively within the perivascular niche51. BMSC 

also produce stem cell factor (SCF), the ligand for the c-kit kinase receptor, which 

maintains HSC pools. Correspondingly, deletion of SCF in BMSC resulted in a marked 

reduction of HSC numbers52.  

In addition to the role BMSCs play in HSC physiology, they also make up niches 

that committed progenitor cells occupy and rely on for proliferation and differentiation 
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cues. Specifically, work by Ding et al revealed that committed B-lineage progenitors are 

dependent on BMSC that reside within the perivascular niche51. The observation that 

committed B-lineage progenitors rely on BSMC in this niche is significant to ALL, as 

greater than 80% of ALL cases are malignant pre- or pro B-cells that are lineage 

committed but lack full productive rearrangement of immunoglobulin genes19,53. BMSC 

within this niche can even promote or regulate fate of malignant cells as seen in the 

case of MLL-AF9 leukemia where BMSC cues can drive the leukemia into either an 

AML or B-cell ALL fate54. In addition to differentiation cues, our laboratory and others 

have shown that BMSC supported ALL cells are known to exhibit increased 

chemotherapy resistance through BMSC induced quiescence and anti-apoptotic 

signaling39,40,55–57. These findings were further extended by the identification that in a 

multiple patient cohort, resistant ALL cells tended to have upregulation of IL-7 and 

CXCR-4 signaling, both of which are known mediators of normal B-cell development 

and are signaling pathways driven by BMSC interactions58.  Additionally, BMSC 

mediated engagement of leukemic Beta1 integrin leads to anti-apoptotic effects through 

downregulation of BCL-2 family members such as BIM57,59. Collectively, these studies 

highlight the impact the perivascular niche has on normal hematopoiesis and leukemic 

proliferation, differentiation, and survival. As BMSCs are key components of this niche, 

the studies below utilize human primary bone marrow stromal cells as representative 

elements of the perivascular niche to test the impacts on ALL cell chemotherapy 

resistance.   

Combined, the osteoblastic and perivascular niches of the bone marrow are key 

microenvironment sites required for normal hematopoiesis and are a major contributor 
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to the leukemia phenotype. As highlighted above and reviewed by others, leukemic cells 

communicate intimately with normal niche cues and to some extent rely on these 

signals for survival and disease progression60. Reciprocally, the impact of leukemic cells 

in the microenvironment has been shown to be detrimental to normal hematopoiesis 

with leukemia cells out competing and “hijacking” the normal HSC niches61. Recent 

work utilizing an ALL mouse model revealed that cancer-propagating leukemic cells 

(CPCs) were able to create small foci CPCs surrounded by BMSC, which resulted in the 

leukemic cells being more resistant to chemotherapy at the expense of normal niche 

architecture62.  Together these studies illustrate the complexity of the BMM and its 

important role in leukemic disease, as well as the crosstalk between cells. Greater 

understanding of the relationship between the BMM and ALL will allow for targeted 

treatment strategies aimed at resistant niche supported cells. In response to this clinical 

challenge, our laboratory continues to investigate BMM interactions that support 

resistant ALL cells through generation of new in vitro BMM/ALL models and innovative 

combination treatment strategies targeting refractory ALL as highlighted below.  

Role of BCL6 in ALL chemotherapy resistance 
 

 As reviewed above, the BMM plays a critical role in the development of ALL 

chemotherapy resistance. In addition to niche cues, intrinsic mutations are known to 

promote chemotherapy resistance and correspond with poor outcomes in ALL patients. 

Well described translocations such as the Philadelphia chromosome (BCR-ABL)(Ph+) 

and the 11q23 rearrangement of the MLL gene are associated with aggressive disease 

and increased drug resistance63. Genetic lesions such as deletions or mutations in the 

IKZF1 gene or activating mutations in JAK tyrosine kinase have also been linked to drug 
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resistance and high risk ALL disease63.  In addition to these well-documented 

mutations, BCL6 protein (B-cell CLL/lymphoma 6, zinc finger protein 51) expression has 

recently been shown to promote drug resistance in ALL64. 

 BCL6 or LAZ3 was first characterized in 1993 by two groups as a gene 

associated with 3q27 chromosomal translocations in B-cell lymphomas65,66. Soon after 

its initial characterization BCL6 was found to also be important in normal germinal 

center biology and B-cell development67,68. More recently BCL6 has become recognized 

as an important transcription factor in a variety of normal and malignant cell contexts. 

BCL6 is a 95 kDa protein that functions as a sequence specific repressor of 

transcription69. BCL6 contains three distinct domains, the N-terminal BTB/POZ domain, 

a central PEST domain, and 6 C-terminus zinc finger DNA-binding motifs (Figure 3)69. 

The N-terminal BTB/POZ domain is critical to BCL6’s function as a transcriptional 

repressor, as this domain is responsible for recruitment and binding of histone 

deacetylase complexes and co-repressors69. Through this domain BCL6 is able to 

directly recruit class I and II histone deacetylases (HDAC)69–71. In addition, BCL6’s BTB 

domain is able to recruit and bind multiple corepressors such as; NCOR1, NCOR2, 

BCOR, and CTBP1 all of which promote BCL6 function as a transcriptional 

repressor69,70,72–76. The POZ portion of this domain can also bind to other zinc finger 

proteins such as Miz-1, which was shown by Phan et al to increase the number of DNA 

sequences BCL6 could affect through use of the Miz-1 specific zinc finger DNA binding 

sites77.  The central PEST domain is also responsible for recruitment of co-repressors 

and like the BTB domain, it binds to CTBP1, but can also recruit co-repressor 

MTA369,76,78.  Moreover, this domain regulates stability of BCL6 serving as a site for 
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phosphorylation and acetylation69. ATM and MAPK pathway activation can result in 

phosphorylation of serine 333 or 343 within the PEST domain leading to BCL6 

degradation through the ubiquitin-proteasome pathway79,80. Additionally, FBXO11 has 

also been reported to bind BCL6 and subsequently lead to ubiquitination and 

proteasomal degradation81. Acetylation of the PEST domain results in a functional 

inactivation of BCL6 by preventing recruitment of co-repressors82. The C-terminus zinc 

finger DNA-binding motifs are critical to BCL6’s transcriptional activity through direct 

binding to sequence specific sites83–86. A few key examples of targeted binding of BCL6 

through its zinc finger motifs are repression of p53, TGF-β receptors, STAT family 

members, a number of CD markers, as well as, key components of BCR, CD40, MAPK, 

and NF-ϰB pathways69. Together these domains allow BCL6 to exert its transcriptional 

repression on a large number of targets through direct and indirect DNA binding, as well 

as recruitment of co-repressors. This positions BCL6 to regulate critical cellular 

programs such as survival, proliferation, and differentiation.  

 Classically, BCL6 has been studied for its role in germinal center biology and its 

impact on diffuse large B-cell lymphoma (DLBCL). In normal B-cell development, BCL6 

expression is associated with B-cells of the dark zone of the germinal center87,88. 

Fukuda et al showed that nascent pre-germinal center B-cells upregulated BCL6 as a 

requirement for migration to the follicular area and initiation of germinal center 

formation89. Consistent with the earlier discussion of overlap in bone marrow regulation 

of normal hematopoiesis and dysregulation that results in ALL, many critical regulators 

have roles in both circumstances.  BCL6 expression in the germinal center context 

promotes B-cell proliferation and allows for tolerance to DNA damage associated with 
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gene rearrangement through repression of p5368,90–92. Additionally, BCL6 modulation is 

an important component of plasmacytic differentiation78,93. Overall, BCL6 regulation and 

its functions are essential to normal maturation of B-cells. Also, this likely explains why 

disruption to normal BCL6 physiology is a major factor in the lymphogenesis seen in 

DLBCL cases. In the case of DLBCL, BCL6 is often constitutively overexpressed due to 

translocation or mutations in the BCL6 locus66,94–96. In this context, BCL6 acts in much 

the same way it does in normal B-cell development promoting proliferation and 

tolerance to DNA damaging stress, thus resulting in B-cell lymphoma94,97–105.  

 More recently BCL6 has been discovered to play a role in malignancies of 

immature B-cells in addition to the role described above for DLBCL, as well as other 

forms of hematologic diseases64,106–108. Sarsotti et al. identified a group of B-cell chronic 

lymphocytic leukemias with BCL6 mutations and observed that these patients had a 

higher risk of disease progression than those without BCL6 mutations109.  BCL6 has 

also been reported to be critical for leukemic stem cell survival in chronic myeloid 

leukemia (CML) through its repression of p53108. Additionally, through generation of a 

Ph+ pre- B-cell ALL model, Duy et al. found that BCL6 was also important to ALL 

leukemic stem cells64.  This group also discovered that BCL6 was upregulated in 

response to tyrosine kinase inhibition, and in part promoted survival through TKI 

resistance via inhibition of p5364. Collectively, BCL6 is a well-defined factor in the 

development of both normal and malignant B-cells that regulates differentiation, 

proliferation, and survival.  
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Summary 
 

 ALL was once a devastating disease with few treatment options and little chance 

of survival. Advances in our understanding of this disease, as well as synthesis of a 

variety of chemotherapy agents allowed for the first breakthroughs in the treatment of 

ALL. Moreover, modern combination treatments have resulted in some of the highest 

response rates seen in all forms of cancer. However, relapse of disease remains a 

persistent problem in the long term survival of patients with ALL and relapse events 

commonly still result in aggressive and drug resistant disease leading to poor outcomes. 

One major contributor to relapse of disease is the frequency with which ALL cells persist 

in the bone marrow niche and contributes to refractory disease that is inevitably 

aggressive. This clinical challenge provides the rational for the projects described 

herein, in which our laboratory aims to establish an efficient and accurate in vitro, pre-

clinical representation of the most drug resistant ALL populations supported through 

BMM interactions. In the manuscript Slone and Moses et al., we provide instruction and 

representative results of our in vitro model of ALL and the BMM, in which we establish 

and recover a chemotherapy resistant ALL population (Chapter 2)40.  This is followed by 

our report in which the BMM supported in vitro ALL chemotherapy resistant population 

is further characterized (Chapter 3)39. In addition to the promotion of chemotherapy 

resistance through BMM interaction, upregulation of the proto-onco gene BCL6 is 

known to support ALL drug resistance64.  However, a major gap in the field is an 

understanding of how the BMM influences ALL levels of BCL6. This gap, as well as 

potential interventions surrounding BMM modulation of ALL BCL6 abundance, is 

discussed in Chapter 4. Collectively, the goal of this project is to provide a better in vitro 
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platform in which to test hypotheses centered on ALL and BMM interactions that lead to 

resistant disease. Additionally, through use of these models, we aim to better 

understand the impact of the BMM on ALL BCL6 levels and use this information to 

further progress current chemotherapy regimens, so that refractory disease may be 

reduced and relapse of ALL prevented.  While preventing relapse is the unifying goal of 

these studies, observations that contribute to reduced need for intense and repeated 

chemotherapy exposure in children is also an important consideration given the long 

term consequences including the generation of secondary malignancies.  Together, 

these concerns underpin the following studies.             
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Figures 

 

 

Figure 1. Mechanisms involved in HSCs and LICs maintenance in osteoblastic and 

vascular niches. 

 

Chiarini F, Lonetti A, Evangelisti C, et al. Advances in understanding the acute 

lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic 

targeting. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2016;1863(3):449–463. 
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Figure 2. The adult bone marrow HSC niche. 

 

Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 

2015;125(17):2621–2629. 
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Figure 3. Schematic representation of BCL6 illustrating its key domains and binding 

partners. 

 

Adapted from: Basso K, Dalla-Favera R. Roles of BCL6 in normal and transformed 

germinal center B cells. Immunol. Rev. 2012;247(1):172–183. 
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SHORT ABSTRACT: The current report summarizes a protocol that can be utilized to 

model the influence of the bone marrow microenvironment niche on leukemic cells with 

emphasis placed on enrichment of the most chemoresistant subpopulation.   

LONG ABSTRACT: It is well established that the bone marrow microenvironment 

provides a unique site of sanctuary for hematopoietic diseases that both initiate and 

progress in this site.  The model presented in the current report utilizes human primary 

bone marrow stromal cells and osteoblasts as two representative cell types from the 

marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions 

described for human leukemic cells with these primary niche components support the 

generation of a chemoresistant subpopulation of tumor cells that can be efficiently 

recovered from culture for analysis by diverse techniques. A strict feeding schedule to 

prevent nutrient fluxes followed by gel type 10 cross-linked dextran (G10) particles 

recovery of the population of tumor cells that have migrated beneath the adherent bone 

marrow stromal cells (BMSC) or osteoblasts (OB) generating a “phase dim” (PD) 

population of tumor cells, provides a consistent source of purified therapy resistant 

leukemic cells.  This clinically relevant population of tumor cells can be evaluated by 

standard methods to investigate apoptotic, metabolic, and cell cycle regulatory 

pathways as well as providing a more rigorous target in which to test novel therapeutic 

strategies prior to pre-clinical investigations targeted at minimal residual disease.   
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INTRODUCTION: The overall goal of the method described is to provide an efficient, 

cost-effective in vitro approach that supports investigation of the mechanisms that 

underlie bone marrow supported survival of leukemic cells during chemotherapy 

exposure. It is well documented that surviving residual tumor cells that persist after 

treatment contribute to relapse of disease that is often more aggressive than that at 

diagnosis and is often less effectively treated1–8. Models that include leukemic cells in 

isolation, such as those limited to culture of cells in media alone, for testing of 

therapeutic approaches do not factor in these critical signals, or the heterogeneity of 

disease that occurs in response to availability of niche derived cues in which tumor cell 

subpopulations with very specific interactions with niche cells derive enhanced 

protection. Standard 2D co-culture models that co-culture bone marrow derived stromal 

cells and leukemic cells have somewhat addressed the contribution of the marrow niche 

and have shown that interaction with bone marrow microenvironment cells increases 

their resistance to chemotherapy and alters their growth characteristics9–14. These 

models however often fail to recapitulate long term survival of tumor cells and do not 

accurately inform the outcomes associated with the most resistant leukemic cell 

populations that contribute to MRD. In vivo models remain critical and define the “gold 

standard” for investigation of innovative therapies prior to clinical trials but they are often 

challenged by the time and cost required to test hypotheses related to resistant tumors 

and relapse of disease. As such, development of more informative 2D models would be 

of benefit for pilot investigations to better inform the design of subsequent murine based 

pre-clinical design.  



www.manaraa.com

 

34 
 

The 2D in vitro model presented in this report lacks the complexity of the true in vivo 

microenvironment, but provides a cost effective and reproducible means to interrogate 

tumor interactions with the microenvironment that lends itself specifically to enrichment 

of the chemoresistant subpopulation of tumor cells. This distinction is valuable as 

evaluation of the entire population of tumor cells may mask the phenotype of a minor 

group of therapy resistant tumor cells that comprise the most important target. An 

additional advantage is the scalability of the model to fit the analysis of interest. Bulk 

cultures can be established for those analyses requiring significant recovery of tumor 

cells, while small scale co-cultures in multi-well plates can be utilized for PCR based 

analysis or microscopy based evaluations.  

Based on this need we developed an in vitro model to address the heterogeneity of 

disease that is characteristic of B-lineage acute lymphoblastic leukemia (ALL).  We 

demonstrate that ALL cells, which share many characteristics in common with their 

healthy counterparts, localize to distinct compartments of BMSC or OB co-culture.  

Three populations of tumor cells are generated that have distinct phenotypes that are 

valuable for investigation of therapeutic response. Specifically, we demonstrate that 

(ALL) cells recovered from the “phase dim” (PD) population of co-culture are 

consistently refractory to therapy with survival that approximates tumor cells that have 

not been exposed to cytotoxic agents. These ALL cells, from either established cell lines 

or primary patient samples, migrate beneath adherent stromal cells or osteoblast layers 

but can be captured following trypsinization of cultures and separation of cell types by 

utilization of gel type 10 cross-linked dextran (G10) particle columns15.  
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Here we present a setup of a 2D co-culture that can be employed to model interactions 

between bone marrow microenvironment stromal cells (BMSC/OB) and leukemic cells. 

Of particular importance is the observation that leukemic cells form three spatial 

subpopulations relative to the stromal cell monolayer and that the PD population 

represents a chemotherapy resistant tumor population due to its interaction with the 

BMSC or OB. Furthermore, we demonstrate how to effectively isolate the leukemic cell 

populations by G10 columns. Of note, we have found that isolation of these 

subpopulations allows for downstream analysis of the most resistant PD population to 

determine potential modes of resistance that are conferred to these cells due to their 

interaction with the bone marrow microenvironment stromal cells or osteoblasts. 

Techniques that we have utilized downstream of this co-culture and isolation model 

include flow cytometric evaluation, proteomic analysis and targeted protein expression 

evaluation as well as more recently developed laser ablation electrospray ionization 

(LAESI) and Seahorse analysis to evaluate metabolic profiles. Through use of this 

model in combination with the techniques above we have found that the PD population 

of leukemic cells has a chemotherapy resistant phenotype that is unique when 

compared to leukemic cells cultured in media alone or those recovered from the other 

subpopulations in the same co-culture. As such, this model lends itself to more rigorous 

evaluation to test strategies targeting the most chemotherapy resistant leukemic cells 

which derive their resistant phenotype through interaction with the bone marrow 

microenvironment.    
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Protocol: 

1. Advanced preparation  

1.1) Preparing G10 particles. 

1.1.1) Prepare G10 slurry by adding 50 ml 1x PBS to 10g G10 particles. Mix by 
inversion and allow G10 to settle out of phosphate buffered saline (PBS) at 4ºC 
overnight.  

1.1.2) The day of G10 column separation, aspirate PBS from settled G10 particles 
and add 50 ml fresh PBS. Mix by inversion. Repeat twice, adding 50 ml fresh PBS to 
settled G10 particles and store at 4ºC until ready to use. 

1.2) Culturing BMSC and OB. 

1.2.1) Both BMSC or OB are maintained at 37 ºC in 6% CO2 and grown on 10 cm 
tissue culture plates until 90% confluency is reached. 

1.2.2) BMSC or OB cells are trypsinized and split 1:2 onto new 10 cm plates.  The 
cells are grown to these standards until needed for leukemic co-culturing. 

2. Establishing and maintaining co-culture 

2.1) Add 5-20 x106 leukemic cells in 10 ml of tumor specific culture media onto an 
80-90% confluent BMSC or OB plate. 

NOTE: Our lab maintains co-cultures at 37 ºC in 5% O2 to better recapitulate the 
bone marrow microenvironment which has been shown to range from 1 to 7%16–18 . 
However, maintaining co-cultures at this oxygen tension is not critical for the 
establishment of the three leukemic subpopulations and is at the discretion of the 
lab.  

2.2) Every 4th day remove all but 1 ml of media (including leukemic cells in 
suspension) and replace with 9 ml fresh leukemic culture media.  

NOTE: When removing 9 ml of media from plate, be careful not to disturb the BMSC 
or OB adherent layer. Remove media by tilting plate to the side and aspirate media 
in the corner of the plate. Additionally, when adding fresh media, be sure to add drop 
wise in the corner of the plate against the sidewall to ensure minimal disruption of 
the BMSC or OB adherent layer.  

2.3) After the 12th day of co-culture, rinse leukemic cells from BMSC or OB layer  by 
pipetting culture media from dish up and down gently over the dish approximately 5 
to 10 times and then collect in 15 ml conical tube. Reseed onto new 80-90% 
confluent BMSC or OB plate as described in step 2.1. 
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NOTE: The gentle rinsing of the co-culture as described in step 2.3 will remove S 
and PB leukemic cells without disrupting the BMSC or OB monolayer. This allows 
only tumor cells to be transferred to the next co-culture plate.  This 12 day cycle can 
be repeated as many times as needed based on user needs.   

 
3. Preparing G10  bead columns 

NOTE: If sterile downstream analysis or culturing is required following G10 column 
separation the following steps should be carried out using sterile technique and G10 
columns should be setup in a sterile biological hood. 

3.1) Pre-warm cell culture media to 37ºC in water bath (~30 ml per column). 

3.2) Using a 10 ml disposable syringe, remove and discard plunger.   
 
3.3) Add glass wool to syringe. 
 
3.3.1) Using tweezers, pull apart glass wool into thin loose strands. Add multiple 
layers of lightly packed glass wool to the syringe until 2/3 of the syringe is filled with 
glass wool. 

NOTE: The glass wool is crucial to prevent loose G10 particles from contaminating 
the leukemic cell collection. Make sure glass wool is packed enough to support the 
G10 particles, but not too densely packed to block media flow through the column.  

3.4) Attach 1-way stopcock to the tip of the syringe in the closed position. 
 
3.5) Clamp syringe column to ring stand high enough so a 50 ml conical tube 
(collection tube) can be placed underneath stopcock. Place collection tube under 
syringe column. 
 
3.6) Using a 10 ml pipette add, drop-wise, G10  particles resuspended in PBS to the 
column on top of the glass wool. Continue adding G10 particles until a ~2 ml pellet 
(as measured by graduations on syringe) of G10 particles forms on top of the glass 
wool.   
 
3.7) Equilibrate the G10 column with pre-warmed media. 
 
3.7.1) Add 2 ml of pre-warmed media to column. Open stopcock valve slowly so that 
media flows out of the column drop-wise.  
 
3.7.2) Repeat step 3.7.1 until a total of 10 ml of pre-warmed media have been ran 
across the column. 

NOTE: If G10 particles are seen in the flow through in the collection tube, either 1) 
add more  G10 particles to maintain ~2 ml pellet making sure no additional G10 
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particles escape from the column or 2) replace column with an unused one and 
repeat steps 3.5-3.7.1.   

3.7.4) Once the pre-warmed media drains from the column, close the stopcock and 
discard collection tube with flow through.  
 
3.7.5) Add new collection tube under column. Column is ready to be loaded with 
media + cell mixture.   
 
NOTE: Columns should be used immediately and not allowed to dry.  
 
4. Separating 3 subpopulations within co-culture 

 
4.1) Collection of suspension (S) tumor subpopulation. 
 
4.1.1) Aspirate media from co-culture plate with pipette and gently reapply the same 
media to rinse the plate and collect media containing leukemic cells in a 15 ml 
conical tube. The leukemic cells collected are the S subpopulation.  
 
4.2) Collection of Phase Bright (PB) tumor subpopulation. 
 
4.2.1) Add 10 ml fresh media back onto co-culture plate. Rinse vigorously by 
pipetting added media up and down approximately 5 times to remove adherent 
leukemic cells but not hard enough to dislodge adherent BMSC/OB component.  
 
4.2.2) Aspirate with pipette and collect media in a 15 ml conical tube. The collected 
cells are the PB subpopulation.  
 
4.3) Collection of Phase Dim (PD) tumor subpopulation. 
 
4.3.1) Rinse plate with 1 ml PBS to remove remaining media. Trypsinize co-culture 
plate with 3 ml trypsin and place into 37ºC incubator for 5 min. 
 
4.3.2) Remove plate out of incubator and gently tap sides of the plate to dislodge 
adherent BMSC/OB. 
 
4.3.3) Add 1 ml fetal bovine serum (FBS) and pipette up and down 3-5 times to 
break apart large cell aggregates. 
 
4.3.4) Collect media with cells in a 15 ml conical tube. These cells are the unpurified 
PD subpopulation with BMSC/OB as well.  
 
4.4) Centrifuge 3 isolated subpopulations at 400x g for 7 min. Aspirate and discard 
supernatant then individually resuspend pellets in 1 ml pre-warmed media. Cells are 
ready to be loaded onto a G10 column.  
 
5. Loading co-culture cells onto G10  column 
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NOTE: Make sure stopcock is completely closed before adding media containing 
cells to G10 column. Also, each subpopulation must be ran over a separate G10 
column so not to introduce any bias between populations in downstream analysis.  
 

 
5.1) Using a 1000 µl pipette, add 1 ml of each cell subpopulation in pre-warmed 
media to a separate G10 column drop-wise. The media containing the cells should 
remain on top or within G10 pellet.  
 
5.2) Allow cells to incubate on G10 pellet for 20 min at RT.  
 
NOTE: Stopcock remains closed for duration of incubation. 

 
6. Collecting leukemic cells from G10 column 

 
6.1) Add 1-3 ml pre-warmed media to each G10 column. 
 
6.2) Open stopcock valve and allow media to slowly exit the column drop-wise. 
 
NOTE: It is crucial to maintain a slow flow rate from the column or the G10 pellet 
containing BMSC/OB can wash out of the column and contaminate the isolated 
leukemic cells. 
 
6.3) Continue to add pre-warmed media in small increments (1-2 ml) to G10 column 
until a total of 15 to 20 ml has run through column and has been collected. Close 
stopcock valve and cap collection tube. 
 
NOTE: If a G10 particle pellet is seen at the bottom of collection tube, gently remove 
media from the tube leaving G10 particle pellet undisturbed and transfer to new 
tube. 
 
6.4) Centrifuge collected media at 400x g for 7 min at RT.   
 
6.5) Remove supernatant and resuspend cell pellet in buffer appropriate for 
downstream application. 
 
6.6) Cells are now a pure population of leukemic cells free of BMSC or OB 
contamination and are ready to be applied to downstream applications at user 
discretion.  
 
NOTE: Leukemic cell viability should remain unchanged when passing cells through 
G10 columns. 
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Representative results: Successful setup and culture of this co-culture model will 

result in the establishment of 3 subpopulations of leukemic cells relative to the adherent 

BMSC or OB monolayer. Figure 1 shows how ALL cells seeded into a BMSC 

monolayer initially appear as only a single population of suspended leukemic cells. Over 

the course of 4 days leukemic cells interact with the BMSC to form 3 spatial 

subpopulations of leukemic cells (suspended (S), phase bright (PB), and phase dim 

(PD)).  While the 3 subpopulations of tumor cells can commonly be seen after 24 hours 

of co-culture with BMSC or OB we co-culture the cells for 4 days to allow the full 

dynamics and interactions between the leukemic cells and BMSC/OB cells to take place 

before any manipulation or experimentation takes place (Figure 1). Also, note that we 

maintain the co-cultures at an oxygen tension of 5% to recapitulate bone marrow 

physiology, which has been reported to range from 1-7%16–18.  

A vast majority of downstream analysis requires the separation of the leukemic cells 

from the BMSC or OB. To achieve this we use G10 columns to harvest a pure 

population of leukemic cells (Figure 2A). Following trypsinization of BMSC and PD REH 

cells a mixed population is seen by two distinct forward/side populations by flow 

cytometry (Figure 2B, top panel).  Following G10 separation a pure population of only 

REH ALL cells is recovered, which was confirmed by forward/side scatter flow 

cytometry (Figure2B, bottom panel).  

Use of this co-culture model and the ability to isolate leukemic cells from 3 

subpopulations when in co-culture with BMSC or OB allows for interrogation of leukemic 

cell phenotype with relation to its spatial location relative to the adherent BMSC or OB 

monolayer. Of particular interest, is that ALL cells recovered from the PD population of a 
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BMSC or OB co-culture have little to no cell death following exposure to cytotoxic 

chemotherapy (Figure 3 A,B).   
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Discussion: Minimal residual disease (MRD) which contributes to relapse of disease 

continues to be a major clinical challenge in the treatment of aggressive refractory ALL, 

as well as, a host of other hematological malignancies. The bone marrow 

microenvironment is the most common site of relapse in ALL3,8. As such, models that 

model the bone marrow microenvironment are vital tools to test hypotheses related to 

leukemic tumor cell survival and maintenance of MRD during chemotherapy exposure. 

While mouse models define the gold standard for testing questions related to drug 

efficacy, 2D co-culture continues to be a cost effective methodology for testing 

hypotheses and drug strategies related to bone morrow microenvironment support of 

leukemic cell survival. Many groups have shown that co-culture of leukemic cells with 

BMSC or OB provides a survival advantage when challenged with chemotherapy 

agents9,10,12–14,19–21. Work modeling normal immature CD34+ hematopoietic cells in co-

culture with mesenchymal stem cells (MSC) revealed that hematopoietic cells will 

interact with the adherent monolayer of MSCs to form three distinct spatial populations 

of hematopoietic cells22,23. Proliferation and differentiation of the CD34+ cells was 

effected relative to their location within the co-culture22. We have expanded on this 

observation to test questions related to bone marrow microenvironment stromal cell 

support of a resistant population of tumor cells within a 2D co-culture and its isolation for 

downstream analysis.  

Unlike standard 2D co-culture models which typically sample leukemic cells by removal 

of the suspended tumor, our model shows that co-culture represents a more dynamic 

interaction in which leukemic cells in co-culture with BMSC or OB form three 

subpopulations relative to the BMSC or OB monolayer (Figure 1). The tumor 
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subpopulations that form are suspended (S) tumor, which is freely floating in the media; 

phase bright (PB) that is adhered to the surface of the BMSC or OB; and the phase dim 

(PD) which have buried beneath the BMSC or OB monolayer (Figure 1).  In this model, 

we found that a strict feeding and reseeding schedule is important to achieve consistent 

results in a co-culture model and therefore we feed the co-cultures at 4 day intervals 

and transfer tumor to new BMSC or OB monolayers every 12 days.  This may require 

modification for alternative tumor types as needed. The number of tumor cells that will 

migrate below the BMSC or OB to form the PD population may vary between different 

leukemic cells. This can be a limitation of the model, when the number of PD tumor cells 

are low making it difficult to collect enough cells for downstream analysis. In some 

cases this problem can be overcome by establishing replicate co-cultures to allow for 

pooling of the three individual subpopulations.  

As this model relies on tumor cell interaction with the BMSC or OB it is important to 

have an effective method to remove stromal cell contamination to address specific 

biology of the leukemic cells. To accomplish this separation of tumor cells from stroma 

we use G10 columns. Proper setup and use of these columns is crucial for isolation of 

pure tumor populations for downstream analysis. As highlighted in Figure 2B, proper 

execution of the G10 column separation results in recovery of tumor cells at greater 

than 99% purity. This allows for downstream analysis of the leukemic cells without 

complication of interpretation of results that would result from stromal cell 

contamination. It is important to note that all leukemic cell types whether cell lines or 

primary patient samples will vary slightly in their ability to pass through the G10 

columns. Before use in large scale experiments users should determine the number of 
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leukemic cells they must input to recover the desired amount needed for their specific 

downstream needs. In addition, the amount of wash media ran over the G10 column 

post incubation can be increased to try and increase the number of cells recovered. 

Care should be taken to insure that the additional washes do not cause stromal cell 

contamination which can be determined post wash by cell counts or flow cytometry 

analysis of flow through.    

In establishing this model, we observed that leukemic cells recovered from the PD 

population have increased viability compared to leukemic cells grown in media alone, as 

well as to those recovered from the S or PB populations in the same co-culture when 

exposed to cytotoxic chemotherapy (Figure 3 a-b). This is significant because it 

represents a population of leukemic cells in vitro that derive pronounced protection from 

chemotherapy. This provides a useful tool to test treatment strategies aimed at targeting 

the most resistant tumor population, which is supported by the bone marrow 

microenvironment. Furthermore, because these leukemic cells are so well protected by 

the BMSC or OB co-culture it is amenable to in vitro combination treatment strategies, 

that in media alone or standard co-culture models would appear to or would completely 

kill the tumor which is not always representative of effects seen in resistant 

microenvironment supported leukemic populations.   

Finally, we believe that use of this model can provide valuable insight into the 

interactions between BMSC/OB, and leukemic cells that are responsible for resistance 

to chemotherapy treatment, lead to MRD, and subsequently relapse. This model 

provides an in vitro platform to design experiments which will better inform downstream 

pre-clinical models. Though we show use of this model to test interactions between 
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bone marrow stromal cells and ALL derived leukemic cells, we are hopeful that future 

directions and applications of this model will be useful in a variety of malignancies in 

which the bone marrow microenvironment provides a site of sanctuary for tumors during 

chemotherapeutic intervention.     
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Figure legends  
 

Figure 1: ALL cells in co-culture with BMSC or OB form three spatial populations. 

Our lab uses an in vitro co-culture system to model leukemic cell interactions with bone 

marrow microenvironment derived stromal cells (BMSC or OB). To establish co-culture, 

leukemic cells (Red) are seeded onto an 80-90% confluent monolayer of BMSC or OB 

(Blue), which is denoted as ‘Time 0’. Co-cultures are maintained at 37ºC at 5% oxygen 

to approximate conditions of the bone marrow microenvironment. Leukemic cells will 

begin to form 3 subpopulations as early as 24 hours, but to allow for complete 

interactions to form we allow co-cultures 4 days to establish before utilizing leukemic 

cells for experiments. By day 4 (right panels), three subpopulations of leukemic cells will 

form in relation to the adherent monolayer. The schematic (top right) and the phase 

contrast microscopy (bottom right) show the suspended (S) leukemic cells freely floating 

in the media; phase bright (PB) leukemic cells which are adhered to the surface of the 

BMSC or OB monolayer; and the phase dim (PD) leukemic cells that have migrated 

beneath the BMSC or OB monolayer. Scale bar represents 10 microns. 

Figure 2: Use of G10 columns allows for separation of ALL cells from BMSC/OB. 

(A) Demonstration of the process of using a G10 column to separate ALL cells from 

BMSC/OB co-culture to achieve a pure population of tumor cells for downstream 

analysis. From left to right, a mixture of ALL cells and BMSC/OB cells is added to the 

top of the G10 column; (Center) cell mixture will settle in the G10 slurry and should be 

incubated at RT for 20 min (Note: Stopcock is in the closed position throughout 

first two steps); (right) leukemic cells are recovered by opening the stopcock and 

rinsing column with pre-warmed media. (B) Top panel shows before G10 separation 
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that there is a mixed population of cells containing BMSC (blue gate) and REH ALL 

cells (red gate) by evaluating forward (FSC) and side scatter (SSC) analysis. Bottom 

panel, following G10  separation only the pure population of REH ALL cells (red gate) 

remain with less than 1% stromal cell contamination (blue gate).   

Figure 3: PD leukemic cells have increased resistance to chemotherapy 

exposure. SD-1 leukemic cells recovered from the PD population of a BMSC co-culture 

(A) do not display reduced viability following a 4 day exposure to Ara-C [1µM], MTX 

[50µM], or VCR [25µM], similar to untreated controls (note that a second dose of Ara-C 

added at 48 hours to account for any drug loss due to stability) . Leukemic cells from the 

media alone, S, and PB populations have significantly reduced viability as determined 

by trypan blue exclusion. SD-1 leukemic cells co-cultured with OB cells display similar 

trends in viability (B). Results are expressed as mean ± SEM. (*) denotes p < 0.05, 

unpaired t-test relative to untreated controls. 
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Figures 

 

 

 

Figure 1: ALL cells in co-culture with BMSC or OB form three spatial populations.  
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Figure 2: Use of G10 columns allows for separation of ALL cells from BMSC/OB.  
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Figure 3: PD leukemic cells have increased resistance to chemotherapy exposure. 
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Abstract 

 

Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the 

survival of ALL patients. However, chemoresistant minimal residual disease (MRD) that 

persists following cessation of therapy contributes to aggressive relapse. The bone 

marrow microenvironment (BMM) is an established “site of sanctuary” for ALL as well as 

myeloid lineage hematopoietic disease, with signals in this unique anatomical location 

contributing to drug resistance. Several models have been developed to recapitulate the 

interactions between the BMM and ALL cells. However, many in vitro models fail to 

accurately reflect the level of protection afforded to the most resistant sub-set of 

leukemic cells during co-culture with BMM elements. Pre-clinical in vivo models have 

advantages, but can be costly, and are often not fully informed by optimal in vitro 

studies. In the current report we describe an innovative extension of 2D co-culture 

wherein ALL cells uniquely interact with bone marrow derived stromal cells. Tumor cells 

in this model bury beneath primary human bone marrow derived stromal cells or 

osteoblasts, termed “phase dim” (PD) ALL, and exhibit a unique phenotype 

characterized by altered metabolism, distinct protein expression profiles, increased 

quiescence, and pronounced chemotherapy resistance. Investigation focused on the PD 

subpopulation may more efficiently inform pre-clinical design and investigation of MRD 

and relapse that arises from BMM supported leukemic tumor cells.  
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Introduction 
 

The bone marrow microenvironment (BMM) is a well-established “site of sanctuary” in a 

host of malignancies, with the most common being of hematopoietic origin[1–8]. In 

leukemia, the BMM serves as the site of initiation and progression of disease. The BMM 

is also the most common site of relapse, where leukemic cells respond to signals that 

are critical for the support of “healthy” steady-state hematopoiesis[2,9,10]. Quiescence, 

metabolism, and survival pathways are all influenced by the BMM and are pathways 

known to be co-opted by leukemic cells in the marrow niche to promote treatment 

resistance[5,7,11]. Studies from many laboratories have furthered our understanding of 

the interplay between leukemic cells and the BMM, however, relapse of disease 

continues to be a clinical challenge.  

A number of models have been employed to recapitulate the interactions between the 

bone marrow niche and leukemic cells. In vivo murine models have provided insight and 

have become standard pre-clinical models in which to test novel therapeutic 

strategies[12–14]. While in vivo models define the gold standard they are labor 

intensive, time consuming, and costly to test hypotheses related to relapse of disease. 

Also, while the BMM can be effectively imaged during disease progression or treatment 

response, sequential sampling of tumor recovered from the niche is only achievable 

upon termination of experiments, resulting in evaluation of snapshots in time. Often, 

ongoing analyses are limited to peripheral circulating tumor that does not reflect the 

most treatment-resistant subpopulation of interest. Standard 2D in vitro models, while 

lacking the complexity of the in vivo microenvironment, provide an alternative means to 

interrogate tumor interactions with the microenvironment. Several groups have 
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demonstrated that 2D co-culture with primary human bone marrow stromal cells 

(BMSC) and osteoblasts (HOB) protect human leukemic cells from chemotherapy 

induced death[2,6,8,11,15]. However, standard in vitro models lack the ability to predict 

long term survival of sub-sets of resistant leukemic cells, and as a result, are not ideal 

for evaluation of mechanisms that underlie MRD.  

Studies including co-culture of healthy hematopoietic stem cells with mesenchymal 

stromal cells (MSC) revealed that co-culture models exhibit a more dynamic nature than 

was previously appreciated. Hematopoietic cells interacted with MSCs in three distinct 

spatial compartments[16]. The subpopulations included uniquely identifiable suspended 

(S), phase bright (PB), or phase dim (PD) tumor cells when evaluated by light 

microscopy. Differences in the hematopoietic stem cell phenotype correlated with 

location of the hematopoietic cell relative to adherent MSC. Of particular relevance to 

the current study was the observation that the “phase dim” (PD) population of 

hematopoietic cells that buried beneath the MSC monolayer was immature and 

quiescent, two characteristics that have been associated with chemotherapy 

resistance[16,17]. In addition, it has previously been described that tumor cells closely 

associated with BMSC or HOB niches in vivo are more resistant to chemotherapy-

induced apoptosis[11,18]. 

Based on previous works we sought to determine whether B- lineage acute 

lymphoblastic leukemia (ALL) cells, which share many common characteristics with 

their healthy pre- and pro-B cell counterparts, would localize to distinct compartments of 

BMSC or HOB co-culture resulting in distinct subpopulations for investigation of 

therapeutic resistance. We demonstrate that ALL cells recovered from the PD 
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population of co-culture are phenotypically distinct, and exhibit many characteristics of 

refractory disease described in vivo. PD derived tumor cells are resistant to therapy with 

survival that approximates tumor cells that have not been exposed to cytotoxic agents. 

When compared to the other subpopulations recovered from the same co-culture, PD 

leukemic cells, in addition to their marked survival during chemotherapy exposure, were 

characterized by increased quiescence and elevated glycolytic activity. Our 

observations suggest that a biologically relevant model of minimal residual disease can 

be utilized in vitro that benefits from the inclusion of relevant human derived BMM 

constituents and targeted evaluation of the most resistant component of ALL. The PD 

leukemic cells in this model lend themselves to more rigorous drug screening than can 

be achieved when total leukemic populations are evaluated. Importantly, this novel 

approach of focus on the PD tumor cells may also more efficiently inform pre-clinical 

design to investigate MRD and relapse, with specific consideration of resistant 

subpopulations supported by the BMM. 

Materials and Methods 
 

Cell lines and culture conditions 

Bcr;Abl (Ph+) lymphoblastic cell lines Tom-1 (DSMZ-ACC 578), Nalm-27 (Fujisaki 

Cancer Center), Nalm-30 (Fujisaki Cancer Center), and Sup-B15 (ATCC-CRL-1929) 

and (Ph-) REH (ATCC-CRL-8286) and Nalm-6 (ATCC-CRL-1567) were utilized. De-

identified primary bone marrow stromal cells (BMSC) were provided by the Mary Babb 

Randolph Cancer Center (MBRCC) Biospecimen Processing Core and the West 

Virginia University Department of Pathology Tissue Bank. BMSC cultures were 

established as previously described[19]. Human osteoblasts (HOB) were purchased 
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(PromoCell, Heidelberg, Germany), and cultured according to the supplier’s 

recommendations. Co-cultures were established by seeding leukemic cells onto 80-90% 

confluent BMSC or HOB monolayers. Cultures were fed every 4 days and tumor cells 

collected for inclusion in experiments with remaining leukemic cells moved to new 

primary BMSC or HOB adherent layers every 12 days. Cultures were maintained in 5% 

O2 to model normal bone marrow oxygen tension, reported to range from 1-7%[20–22]. 

Suspended (S) leukemic cells floating freely in the media were removed by gentle 

pipetting. Phase bright (PB) tumor cells, that were loosely adherent to the top of BMSC 

or HOB, were harvested by vigorous pipetting. Phase dim (PD) leukemic cells that were 

buried firmly beneath adherent BMSC or HOB were recovered by trypsinization of the 

adherent layer and PD tumor. The S, PB, and PD tumor populations were separated 

from BMSC/HOB by size exclusion with G10 Sephadex (Sigma, St Louis, MO, USA) 

column separation[23,24]. 

Microscopy 

Phase contrast images were acquired using a Leica DMIL LED microscope and 

processed by Leica application suite version 4.0 software (Buffalo Grove, IL, USA). 

Confocal images were acquired using an upright LSM 510 Zeiss microscope and 

processed using Zen2009 software (Thornwood, NY, USA). Fluorescence intensity for 

image acquisition was only altered when fluorescence intensities were not compared 

between samples.  

Subpopulation tracking 

The three ALL subpopulations were isolated from co-culture as described above. Each 

subpopulation (S, PB and PD) was individually stained with CellTracker™ Green, 
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CellTracker™ Violet, or CellTracker™ Deep Red (Life Technologies, Grand Island, NY, 

USA) following the manufacturer’s protocol. An equal number of cells from each 

population was combined and cultured on coverslips with confluent BMSC or HOB for 1, 

4 and 48 hours. Coverslips were extensively washed with PBS to remove S and PB 

subpopulations, fixed with 4% paraformaldehyde, and stained with phalloidin-TRITC 

(Sigma). Slides were mounted with Prolong® Gold anti-fade (Life Technologies), and 

evaluated by confocal microscopy. 

Chemotherapeutic agents  

Cytarabine (Ara-C) (Selleckchem, Houston, TX, USA; Cat # S1648), Methotrexate 

(MTX) (Selleckchem, Cat # S1210) and Vincristine (VCR) (Selleckchem, Cat # S1241) 

were stored per manufacturer recommendations, and diluted in base media immediately 

prior to use. Experimental concentrations of Ara-C [1 µM], MTX [50 µM], or VCR [25 

µM] were used to approximate clinically relevant doses in ALL[25–29]. 

Evaluation of leukemic cell viability  

ALL cells were cultured in media alone, or co-cultured with BMSC or HOB for 4 days to 

establish S, PB, and PD tumor populations. At day 4, cultures were provided fresh 

media and exposed to Ara-C, MTX, or VCR for 4 days. Cells treated with Ara-C were 

exposed to a second dose at 48 hours. Viability was evaluated by trypan blue exclusion 

in triplicate samples. 

Annexin V/PI staining 

Cell culture and chemotherapy exposure were completed as described above. 

Following drug exposure ALL cells were stained using an Annexin V (FITC)/ propidium 
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iodide (PI) apoptosis detection kit (Trevigen, Gaithersburg, MD, USA; Cat # 4830-01-K) 

according to the recommended protocol of the manufacturer. Collection and analysis 

were performed in triplicate using the LSRFortessa (Becton Dickenson, San Jose, CA, 

USA). 

Co-culture of tumor cells with non-bone marrow derived adherent cells 

ALL cells were cultured in media alone, or co-cultured with sheep choroid plexus 

epithelial cells (SCP) (ATCC-CRL-1700), 3T3 mouse embryonic fibroblasts (3T3) 

(ATCC-CRL-1658), mouse embryonic fibroblasts (MEF) (ATCC-CRL-2991), human 

embryonic kidney cells (293T) (ATCC-CRL-3216), or HT-1080 human fibrosarcoma 

derived cells (HT) (ATCC-CCL-121). Leukemic cells were cultured with adherent layers 

for 4 days to establish S, PB, and PD tumor populations comparable to those 

established with human BMSC/HOB. At day 4, cultures were exposed to Ara-C and 

evaluated for viability by trypan blue exclusion in triplicate as described above.  

In vitro relapse model 

ALL cells were grown in co-culture with BMSC or HOB for 4 days. At day 4, cultures 

were provided fresh media and exposed to Ara-C for 72 hours. Following Ara-C 

exposure, S and PB ALL cell subpopulations were harvested as previously described  

and viability enumerated by trypan blue exclusion. Co-cultures, in which PD tumor cells 

remained buried beneath adherent BMSC/HOB, were rinsed to remove residual Ara-C 

and subsequently repopulation was monitored. ALL cells that comprised the 

regenerated S and PB fractions were enumerated at 5 day intervals at which time fresh 

media was provided. Cultures were maintained until tumor burden compromised BMSC 

or HOB monolayers.  
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Western blot analysis 

Specific targets of glycolytic regulation were detected by rabbit mAb Hexokinase 1 (Cell 

Signaling Technologies, Danvers, MA, USA; C35C4; Cat # 2024) and rabbit mAb 

Hexokinase 2 (C64G5; Cat # 2867). Following incubation with horseradish peroxidase–

conjugated secondary antibodies, signal was visualized using enhanced 

chemiluminescence (Amersham, Piscataway, NJ, USA). Densitometry was quantified 

by ImageJ with signal normalized to GAPDH. 

Ki-67 staining 

ALL subpopulations were either cytospun following G10 Sephadex purification following 

co-culture or analysis was completed on ALL cells during co-culture with BMSC or HOB 

grown on coverslips. Cells were fixed with 4% paraformaldehyde, washed with PBS, 

permeabilized with 0.1% Triton X-100 (Sigma) in PBS, and incubated with rabbit anti-Ki-

67 followed by Alexa 488 anti-rabbit. Phalloidin-TRITC was used to visualize the actin 

cytoskeleton. Cells were washed with PBS and mounted to glass slides (coverslip 

staining) or coverslips (cytospins) with Prolong® Gold anti-fade/DAPI. Images were 

acquired by confocal microscopy and a minimum of 50 cells were counted to quantitate 

percent positive Ki-67 cells in triplicate.  

Cell cycle analysis 

G0 accumulation of ALL cells was investigated by evaluation of the DNA/RNA content 

quantitated by Hoechst33342/Pyronin Y (H/PY) (Sigma) double staining as previously 

described.[30] To evaluate the overall cell cycle profile of ALL cells, leukemic cells were 

collected from media or the PD population of co-culture after 12 days. ALL cells were 

fixed in 70% ethanol, treated with RNase (Sigma), and stained with PI for DNA analysis. 
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All samples were performed in triplicate and processed on a FACSFortessia flow 

cytometer, and analyzed by FCS Express 4 software.  

 Oxygen consumption and Extracellular Acidification analysis  

Leukemic cells (800,000 cells/well) were collected from media alone or isolated from 

BMSC/HOB co-culture and incubated in an XFe96 cell culture microplate coated with 

Cell-Tak (BD Biosciences). The XFe 96 Analyzer with XF Assay Media containing 

sodium pyruvate and glucose was used to determine Oxygen Consumption Rate [OCR] 

measurements, or with XF Base Media with L-glutamine to determine Extracellular 

Acidification Rate [ECAR] measurements. The XF plate was calibrated overnight with 

XF Calibrant at 37ºC. On the day of the measurements, tumor cells were plated directly 

in XF media, and basal measurements (OCR or ECAR) were collected at three time 

points. All analysis was performed using XFe 96 Analyzer (Seahorse Bioscience, North 

Billerica, MA, USA)  

Laser Ablation Electrospray Ionization (LAESI) and LC-MS/MS 

Leukemic cells cultured in medium alone or harvested from the PD population of BMSC 

or HOB co-culture were analyzed by LAESI-MS for metabolic profiling. Quantitative 

proteomic LC-MS/MS analyses were performed on the following cell treatments: 

leukemic cells grown in media alone and co-culture with BMSC, BMSC/HOB, and HOB 

(Protea Biosciences, Morgantown, WV, USA). Detailed methodology and statistical 

analyses are included in Supplementary Materials and Methods. 
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Statistical analysis 

Results are expressed as mean ± SEM. An unpaired t-test was performed to analyze 

results of cell viability data, H/PY, and KI67 quantitation (Graph Pad Software, La Jolla, 

CA, USA). Results of basal ECAR and OCR rates were analyzed by One-way ANOVA 

with Dunnett’s post hoc (Sigma Plot, San Jose, CA, USA). A p value of < 0.05 was 

considered statistically significant as detailed in figure legends. Error bars throughout 

figures are represent standard error (SEM). 

Results 

 

ALL cells in co-culture with BMSC or HOB form three distinct spatial 

compartments.  

A panel of ALL cell lines formed three spatially and phenotypically distinct populations 

during co-culture with BMSC (Figure 1) or HOB (DNS). ALL cells were separated into 

suspended tumor (S), which are not in physical contact with BMSC/HOB, phase bright 

(PB) that are loosely adherent to BMSC/HOB and phase dim (PD) subpopulations 

which bury beneath the BMSC or HOB monolayer (Figure 1). Each individual 

subpopulation re-establishes the PD subpopulation when collected and placed into 

subsequent co-cultures. When individual ALL subpopulations (S, PB, and PD) were 

removed from BMSC or HOB co-culture, stained with distinct dyes and re-plated for 1-

48h of interaction with BMM, no unique affinity was observed within any group of ALL 

cells to repopulate the PD compartment (Figure 2).  
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ALL cells located in the PD population of BMSC or HOB co-culture demonstrate 

pronounced resistance to chemotherapy-induced death.  

PD ALL cells in BMSC/HOB co-culture have pronounced protection from chemotherapy-

induced death when compared to media alone, S, or PB tumor cells following exposure 

to Ara-C, methotrexate (MTX), or vincristine (VCR) (Figure 3A-B and DNS). ALL cells 

readily establish three subpopulations (S, PB and PD) when co-cultured with several 

types of adherent layers established from sites other than the bone marrow, however, 

the PD population is not protected from Ara-C induced cell death (Figure 3C). 

Furthermore, we determined if surviving PD tumor cells from human BMSC or HOB co-

culture could reconstitute the culture upon conclusion of chemotherapy exposure to 

simulate a purposefully simplified “in vitro relapse”. Following a quiescent period of 

approximately 15 to 20 days, ALL cells from the chemotherapy resistant PD population 

migrated from beneath the stromal layers and initiated proliferation to re-populate the 

cultures (Figure 3D).  

 

ALL cells influenced by BMM have altered cell cycle distribution and quiescence.  

PD ALL cells have an increased G0/G1 fraction compared to media alone ALL cells 

(Figure 4A). The G0/G1 combined fraction was further investigated to determine the sub-

set of PD ALL cells that are specifically in the G0 (quiescent) phase by H/PY double 

staining. Corresponding to the increase in G0/G1, PD cells have an increase in the 

percentage of cells in G0 compared to ALL cells in media alone (Figure 4B). Ki-67 

staining was completed for analysis of the PD ALL population (Figure 4C) with PD ALL 

cells consistently having diminished Ki-67 staining when compared to media controls 
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(Figure 4C-D). In addition to cell cycle analysis and Ki-67 expression alterations, global 

proteomic analysis was performed. As shown in Figure 5, proteins involved in cell cycle 

progression and DNA accessibility were altered in the leukemic cells influenced by the 

BMM. For a select group of histone-related proteins, alterations were seen in SUP-B15 

ALL cells co-cultured with BMSC versus those co-cultured with HOB.  

BMSC/HOB cues alter ALL metabolic profiles. 

PD ALL cells have an increased level of glycolytic activity reflected by increased 

extracellular acidification rate (ECAR) when compared to ALL cells in media alone 

(Figure 6A). In agreement with increased basal glycolytic activity, PD ALL cells also 

have increased Hexokinase 1 and 2 protein levels (Figure 6B). While glycolytic activity 

was increased in the PD population, basal levels of oxidative phosphorylation are 

significantly diminished in leukemic cells in co-culture (Figure 6C). Metabolomic analysis 

was completed to compare global changes between leukemic cells in the presence (PD) 

or absence (media alone) of microenvironment cues with clustering of m/z according to 

expression level reflecting distinct metabolic profiles (Figure 6D).  

 

Discussion  

In this study, using an extension of 2D co-culture techniques we have demonstrated 

that a panel of ALL cell lines when in co-culture with BMSC or HOB form three distinct 

spatial compartments: S, PB, and PD. Of these, the PD population is the most resistant 

and quiescent subpopulation generated by BMM interactions in vitro, and provides a 

valuable tool that can be applied for studying aggressive, resistant leukemia for targeted 

intervention. To evaluate whether the three individual groups of ALL cells had specific 
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affinity for the location from which they were isolated, cell tracking experiments were 

completed. Leukemic cells in our model behave stochastically, and did not preferentially 

reconstitute the location from which they were isolated (Figure 2). S, PB or PD derived 

ALL cells readily buried under BMSC or HOB ("became PD"). This observation 

suggests a very dynamic phenotype, driven by the specific cues in distinct locations, 

versus a sustained phenotypic alteration or ALL cell “memory”.  

Our laboratory has previously shown that in general BMSC provide chemotherapy 

protection to leukemic cells via soluble factors[32,33] and adhesion interactions in 

standard 2D co-cultures[15,34–36]. When the attention was directed to the PD 

subpopulation, they were shown to be the most resistant to chemotherapy exposure. 

Protection was specific to interactions with BMM-derived BMSC, HOB or NSG derived 

BMSC (Figure 3A-C, DNS). The value of our model approach is the observation that, 

with inclusion of just one niche component, either BMSC or HOB, a distinct group of 

tumor cells can be isolated that have altered cell cycle profiles, metabolic signatures 

and cytotoxic agent response. Future work can expand upon this model, increasing its 

complexity through methodical addition of other key bone marrow microenvironment 

components, such as endothelial cells[36], to better recapitulate the resistant leukemic 

niche in vitro  to answer specific, clinically relevant questions with emphasis on 

interruption of signals that influence ALL cell quiescence, metabolic activity, and 

apoptosis.  

Tumor cells that are in a quiescent state have been described by other groups to be 

drug resistant[37]. We observed that PD cells accumulate in the G0/G1 phase of cell 

cycle with a reduction in S phase (Figure 4A). Coincident with induction of quiescence, 



www.manaraa.com

 

67 
 

PD cells had increased p27 suggesting this may be one mechanism by which the cells 

are arrested in a G0 state (DNS; figure 4B). The PD population does not demonstrate 

100% accumulation in G0 indicating that cell cycle interruption does not explain the 

entire escape from S phase specific drug-induced apoptosis. Even within the purified 

PD subpopulation multiple pathways are likely influenced by niche cells that converge 

on blunting apoptosis. PD ALL cells also had a reduced proliferation index measured by 

Ki-67 staining (Figure 4C-D), again consistent with the assertion that the BMM alters 

ALL proliferation, which may be one contributing factor to increased chemotherapy 

resistance (Figures 3-4). Future studies will be important to evaluate a broader range of 

drugs in this model, including those that are not S phase specific, to expand our 

understanding of the resistant subpopulation.  

Diverse protein pathways were altered in leukemic cells during co-culture with BMM 

cells evaluated by MS/MS analysis (Figure 5). Key pathways with significant alteration 

in ALL cells were those associated with cell cycle progression and DNA accessibility. 

Interestingly, differences were not only seen in ALL cells from BMM niche co-culture 

compared to media alone, but also in histone related protein expression between ALL 

cells influenced by BMSC compared to HOB. Although both cell types are derived from 

the bone marrow, it is not surprising that they influence ALL gene expression differently 

based the uniqueness of the endosteal and perivascular niches[38,39]. This reflects the 

complexity of the marrow niche and compartmentalization of function that is critical for 

regulated development of healthy hematopoietic cells through controlled differentiation, 

proliferation, survival and eventual egress to the periphery.  
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We further characterized the metabolomic profiles of the PD subpopulation compared to 

tumor cells grown in media alone utilizing LAESI-MS. The metabolic signatures of 

leukemic cells provided microenvironment cues were notably distinct from ALL cells 

deprived of these signals (Figure 6). This global evaluation was not intended to identify 

specific targets but rather to determine if overall metabolite patterns were shifted (Figure 

6D). The cellular metabolism of this subpopulation of leukemic cells has been altered by 

the bone marrow microenvironment interactions, resulting in quiescent cells with high 

glycolytic potential (Figure 6A-B). This has been previously observed in quiescent 

fibroblasts[40], and the notion that the PD cells are “primed” for proliferation when they 

are released from quiescent constraints is a characteristic previously reported in 

activated dormant T cells[41]. 

A particular concern that remains in ALL is the aggressive treatment strategies required 

to treat relapse in children with the marked potential of late effects and secondary 

malignancies. Against this backdrop, it is essential to expand the knowledge we obtain 

in vitro for efficient translation to pre-clinical modeling, subsequent novel drug trials, and 

generation of new treatment paradigms for patients. Clearly limitations are significant in 

modeling a complex and dynamic disease such as ALL in vitro. The unique leukemic 

co-culture model described with an emphasis on a functionally distinct, quiescent and 

chemoresistant PD subpopulation provides a valuable tool for future analysis. Further 

dissection of the molecular pathways regulated by the BMM and the “sanctuary” that is 

created for leukemic cells to generate refractory disease still needs to be extensively 

studied in order to achieve a higher percentage of disease free survival in leukemia 

patients.  
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Supplemental methods: 

 

Culture conditions 

Co-cultures were established by seeding leukemic cells onto 80-90% confluent BMSC 

or HOB monolayers. Cultures were fed every 4 days and tumor cells collected for 

inclusion in experiments with remaining leukemic cells moved to new primary BMSC or 

HOB adherent layers every 12 days. Cultures were maintained in 5% O2 to model 

normal bone marrow oxygen tension, reported to range from 1-7%[1–3]. Suspended (S) 

leukemic cells floating freely in the media were removed by gentle pipetting. Phase 

bright (PB) tumor cells, that were loosely adherent to the top of BMSC or HOB, were 

harvested by vigorous pipetting. Phase dim (PD) leukemic cells that were buried firmly 

beneath adherent BMSC or HOB were recovered by trypsinization of the adherent layer 

and PD tumor. The S, PB, and PD tumor populations were separated from BMSC/HOB 

by size exclusion with G10 Sephadex (Sigma, St Louis, MO, USA) column 

separation[4].  

Microscopy 

Phase contrast images were acquired using a Leica DMIL LED microscope and 

processed by Leica application suite version 4.0 software (Buffalo Grove, IL, USA). 

Confocal images were acquired using an upright LSM 510 Zeiss microscope and 

processed using Zen2009 software (Thornwood, NY, USA). Fluorescence intensity for 

image acquisition was only altered when fluorescence intensities were not compared 

between samples.  
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Co-culture of tumor cells with non-bone marrow derived adherent cells 

ALL cells were cultured in media alone, or co-cultured with sheep choroid plexus 

epithelial cells (SCP) (ATCC-CRL-1700), 3T3 mouse embryonic fibroblasts (3T3) 

(ATCC-CRL-1658), mouse embryonic fibroblasts (MEF) (ATCC-CRL-2991), human 

embryonic kidney cells (293T) (ATCC-CRL-3216), or HT-1080 human fibrosarcoma 

derived cells (HT) (ATCC-CCL-121). Leukemic cells were cultured with adherent layers 

for 4 days to establish S, PB, and PD tumor populations comparable to those 

established with human BMSC/HOB. At day 4, cultures were exposed to Ara-C and 

evaluated for viability by trypan blue exclusion in triplicate. 

In vitro relapse model 

ALL cells were grown in co-culture with BMSC or HOB for 4 days. At day 4, cultures 

were provided fresh media and exposed to Ara-C for 72 hours. Following Ara-C 

exposure, S and PB ALL cell subpopulations were harvested as previously described  

and viability enumerated by trypan blue exclusion. Co-cultures, in which PD tumor cells 

remained buried beneath adherent BMSC/HOB, were rinsed to remove residual Ara-C 

and subsequently repopulation was monitored. ALL cells that comprised the 

regenerated S and PB fractions were enumerated at 5 day intervals at which time fresh 

media was provided. Cultures were maintained until tumor burden compromised BMSC 

or HOB monolayers. 

Western blot analysis 

Specific targets of glycolytic regulation were detected by rabbit mAb Hexokinase 1 (Cell 

Signaling Technologies, Danvers, MA, USA; C35C4; Cat # 2024) and rabbit mAb 
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Hexokinase 2 (C64G5; Cat # 2867). Following incubation with horseradish peroxidase–

conjugated secondary antibodies, signal was visualized using enhanced 

chemiluminescence (Amersham, Piscataway, NJ, USA). Densitometry was quantified 

by ImageJ with signal normalized to GAPDH. 

Ki-67 staining 

ALL subpopulations were either cytospun following G10 Sephadex purification following 

co-culture or analysis was completed on ALL cells during co-culture with BMSC or HOB 

grown on coverslips. Cells were fixed with 4% paraformaldehyde, washed with PBS, 

permeabilized with 0.1% Triton X-100 (Sigma) in PBS, and incubated with rabbit anti-Ki-

67 followed by Alexa 488 anti-rabbit. Phalloidin-TRITC was used to visualize the actin 

cytoskeleton. Cells were washed with PBS and mounted to glass slides (coverslip 

staining) or coverslips (cytospins) with Prolong® Gold anti-fade/DAPI. Images were 

acquired by confocal microscopy and a minimum of 50 cells were counted to quantitate 

percent positive Ki-67 cells in triplicate. 

Seahorse analysis  

Leukemic cells (800,000 cells/well) were collected from media alone or isolated from 

BMSC/HOB co-culture and incubated in an XFe96 cell culture microplate coated with 

Cell-Tak (BD Biosciences). The XFe 96 Analyzer with XF Assay Media containing 

sodium pyruvate and glucose was used to determine Oxygen Consumption Rate [OCR] 

measurements, or with XF Base Media with L-glutamine to determine Extracellular 

Acidification Rate [ECAR] measurements. The XF plate was calibrated overnight with 

XF Calibrant at 37ºC. On the day of the measurements, tumor cells were plated directly 



www.manaraa.com

 

76 
 

in XF media, and basal measurements (OCR or ECAR) were collected at three time 

points. 

Laser Ablation Electrospray Ionization (LAESI) 

Prior to direct analysis by laser ablation electrospray ionization (LAESI-MS) each cell 

pellet (5x106 cells) was centrifuged at 1,000 x g for 2 minutes at 4°C. The entire pellet 

(~3 µL) was dispensed onto a glass microscope slide for LAESI-MS analyses. In vivo 

molecular profiling was performed on the cells with a LAESI DP-1000 Direct Ionization 

source interfaced with a Thermo QExactive mass spectrometer (Thermo Scientific). 

Electrospray solution (50% methanol/0.1% acetic acid) flowed at 1 µL/min through a 

stainless steel emitter tip (320 µm OD and 100 µm ID; New Objective, Woburn, MA) at 

an electrospray voltage 4 kV. Three technical replicates (250 laser pulses at 10 Hz with 

a laser energy 600 µJ) were performed per three biological replicates. The LAESI peltier 

stage was cooled to 4°C. Full scan mass spectrometer profiles were collected over a 

mass range of m/z 50 to 750 at 35,000 mass resolution with m/z 37[5]. 1012 selected 

for real-time mass accuracy lockmass correction. 

Post-analysis Processing and Multivariate Statistics 

Post LAESI-MS acquisition, the spectra were averaged across each technical replicate 

per biological replicate (approximately 175 scans).  Multivariate statistics were applied 

in order to compare media treatment to BMSC and HOB, respectively. Mass Profiler 

Professional (Agilent, version 13 build 211261) was used to determine significantly 

altered m/z using a Benjamini Hochberg false discovery rate corrected p-value <0.01 

from ANOVA testing1. Putatively altered m/z visualized using the heatmap function. 
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Proteomics 

iTRAQ Sample Preparation 

Cell pellets were lysed 150µL of 0.1 M TEAB with 2% SDS, vortexed and sonicated for 

20 minutes in an ice bath, followed by centrifugation at 12,000 g for 10 minutes. 

Supernatant was quantified by BCA, and 200 µg of protein from each cell type was 

precipitated using cold acetone in a 6:1 acetone to sample ratio, chilling at -20°C 

overnight. Proteins were reduced and alkylated, and trypsin digested overnight. The 

iTRAQ labeling (Applied Biosciences) was performed according to manufacturer’s 

instructions, labeling for two hours, followed by adding an excess 350 µL of water and 

incubating for 30 minutes to stop the labeling reaction. Samples Media, BMSC, 

BMSC/HOB, and HOB samples were labeled with tagged with the 115, 1116, 117, 118 

reagents, respectively. Samples were frozen to -80°C followed by overnight 

lyophilization, and cleaned up using strong cation exchange (SCX) SpinTips (Protea 

Biosciences). Samples were lyophilized after cleanup, and reconstituted in 40 µL of 

0.1% formic acid/5% acetonitrile. 

LC-MS/MS 

Samples were separated by reverse phase chromatography using a Shimadzue LC-

20AD HPLC system eluting over 90 minutes using a C18 column (Kinetex 100 x 2.1 mm 

C18, Phenomenex). Gradient was 0-3 minutes 2% B, 3-70 minutes 2-40%B, 70-80 

minutes 90% B followed by a column wash 80-85 minutes 90% B using a flow rate of 

200 µL/minute. Mobile phase A was 0.1% formic acid in water, mobile phase B was 

0.1% formic acid in acetonitrile. Peptides were eluted with a positive ion mode applied 
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voltage of 3.5 kV into a QTrap 5500 (AB Sciex). Using data independent acquisition, the 

3 most intense multiply charged ions with ion intensities above a threshold of 50000 in 

each regular MS scan were subjected to MS/MS analyses. 

Data Analysis 

MS/MS data were searched against the Swissprot human database downloaded 

January 7, 2015. Data were searched with the Paragon search algorithm (Applied 

Biosciences) through the ProteinPilot software using trypsin as the enzyme, statics 

modifications of Cysteine and MMTS (Methylthio, the labeling reagent), dynamic 

modifications of deamidation (N,Q) and oxidation (M). Autobias was applied for 

quantification using GAPDH as a control to evaluate quantification. Altered proteins 

were designated as those with p-value <0.05 relative to Media. The web applications 

ToppCluster and WebGestalt were used for enrichment analysis and graphical 

representation of biological processes and pathways[6,7]. 

Statistical analysis 

Results are expressed as triplicate mean ± SEM. An unpaired t-test were performed for 

viability, H/PY, and KI67 quantitation (Graph Pad Software, La Jolla, CA, USA). 

Seahorse results were analyzed by One-way ANOVA with Dunnett’s post hoc (Sigma 

Plot, San Jose, CA, USA). p value of < 0.05 was considered statistically significant. 
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Figure legends 

  

Figure 1. Human acute lymphoblastic leukemia cells (ALL) occupy three functionally 

distinct spatial compartments during co-culture with BMSC. The left panels show 

suspended ALL tumor cells from representative cell lines (REH, Nalm-27 or Tom-1) 

grown in media alone. Right panels demonstrate co-culture dynamics with leukemic 

cells forming three functionally distinct populations in relation to the BMSC monolayer. 

Cells were co-cultured for 48 to 72h prior to acquiring images. The three ALL 

populations include suspended (S) cells which refract light, appear bright and are freely 

floating in culture media; phase bright (PB) tumor cells that are loosely attached to the 

surface of the adherent BMSC monolayer; and phase dim (PD) tumor cells which are 

beneath the BMSC monolayer and appear as phase dim cells upon light microscopy. 

Arrows highlight the PD subpopulation of ALL cells in co-culture with BMSC, which are 

enlarged in the inset for more detailed visualization. Scale bar= 10 µm.  

 

Figure 2. Each subpopulation of Nalm-27 ALL cells re-established the PD fraction when 

provided BMM niche cells. The S, PB and PD ALL subpopulations were collected from 

co-culture and individually stained with blue, far red and green fluorophores for 

visualization, respectively. Each subpopulation associated with BMSC (top panel) and 

HOB (bottom panel) observed after 48h. Co-cultures were vigorously rinsed to remove 

S and PB tumor cells to visualize only PD tumor cells shown in the representative 

images. Actin was visualized by Phalloidin-TRITC staining. Levels including gamma 

were adjusted and a median filter was applied for image clarity with no comparison of 

intensity. Scale bar= 10 µm. 
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Figure 3. PD leukemic cells have pronounced resistance to chemotherapy induced 

death. (A) Leukemic cells recovered from the PD population of an HOB co-culture have 

significantly increased viability following exposure to Ara-C [1 µM], MTX [50 µM], or 

VCR [25 µM] determined by trypan blue exclusion or (B) Annexin V-FITC/PI staining 

when compared to matched controls that are exposed to cytotoxic agents in media 

alone. (C In contrast to human BMSC or HOB co-culture, leukemic cells recovered from 

the PD population of non-bone marrow derived adherent layers do not have increased 

viability compared to untreated controls during exposure to Ara-C. (D) PD leukemic cells 

undergo a quiescent recovery period following Ara-C exposure, followed by an 

aggressive period of proliferation to repopulate the S and PB populations. (*) denotes p 

< 0.05, unpaired t-test when compared to media alone or untreated controls.  

 

Figure 4. BMM cells influence the PD subpopulation cell cycle profile and increase 

quiescence. (A) PD cells have a higher percentage of cells in the G0/G1 phase and a 

reduction in S phase compared to media alone leukemic cells as measured by PI 

staining. (B) H/PY staining revealed the PD cells have a higher percentage of cells in G0 

when compared to tumor cells cultured in media alone. (C) Assessing Ki-67 (green) 

expression by confocal microscopy, the PD cells had a reduction in Ki-67 positive cells. 

TRITC staining: red, DNA staining: blue, Ki-67: green. Scale bar equal= 10 µm. (*) 

denotes p < 0.05, unpaired t-test when compared to media alone.  
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Figure 5. BMM alters global protein expression in ALL cells. The heat map shown 

represents differentially regulated proteins comparing Sup-B15 ALL cells co-cultured 

with BMSC or HOB to those grown in media alone. GAPDH was used as a control to 

normalize expression in all groups. A p-value <0.05 for comparisons of co-culture 

relative to media alone was required for designation of a difference in protein 

abundance.  

 

Figure 6. PD cells isolated from bone marrow niche co-culture have a distinct metabolic 

phenotype when compared to ALL cells in the absence of microenvironment signals. (A) 

REH cells recovered from the PD population have increased basal glycolytic rates 

compared to tumor in media alone or their S and PB counterparts from the same BMSC 

or HOB co-culture as indicated by the increase in extracellular acidification rate (ECAR). 

(B) Western blot analyses indicated increased Hexokinase 1 and Hexokinase 2 protein 

expression in PD ALL cells compared to tumor cells maintained in media alone. (C) 

REH cells in co-culture with BMSC or HOB have decreased basal oxygen consumption 

compared to media alone controls as reflected by diminished oxygen consumption rate 

(OCR). (D) Laser ablation electrospray ionization mass spectrometry (LAESI-MS) 

metabolomic analysis of Nalm-27 cells cultured in media alone or recovered from the 

PD population of BMSC or HOB co-culture showed global changes of metabolites 

between ALL cells populations. Heat map represents differentially expressed metabolite 

ions (m/z values), p-value < 0.01. (*) denotes p < 0.05 by One-way ANOVA with 

Dunnett’s post hoc when compared to media alone.  
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Figures 

 

 

Figure 1. Human acute lymphoblastic leukemia cells (ALL) occupy three functionally 

distinct spatial compartments during co-culture with BMSC. 
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Figure 2. Each subpopulation of Nalm-27 ALL cells re-established the PD fraction when 

provided BMM niche cells. 
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Figure 3. PD leukemic cells have pronounced resistance to chemotherapy induced 

death. 
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Figure 4. BMM cells influence the PD subpopulation cell cycle profile and increase 

quiescence. 
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Figure 5. BMM alters global protein expression in ALL cells. 
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Figure 6. PD cells isolated from bone marrow niche co-culture have a distinct metabolic 

phenotype when compared to ALL cells in the absence of microenvironment signals. 
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Abstract 

 

The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) 

cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic 

cells, in this niche, survive treatment and contribute to relapse. This study suggests that 

marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved 

in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL 

cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein 

abundance is decreased in the presence of primary human bone marrow stromal cells 

(BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in 

ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens 

require tumor cell proliferation for optimal efficacy, we investigated the consequences of 

constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. 

Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the 

tumor to chemotherapy induced cell death. Combination treatment of caffeine, which 

increases BCL6 expression in ALL cells, with chemotherapy extended the event free 

survival of mice. These data suggest that BCL6 is one factor, modulated by 

microenvironment derived cues that may contribute to regulation of ALL therapeutic 

response.  
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Introduction  

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. While 

two-thirds of cases present in children, the risk of ALL also increases with age in the 

adult population [1]. In both populations, relapse of disease is associated with poor 

prognosis, with relapsed disease often being more aggressive and refractory to 

treatment [2, 3].  Risk of relapse has been shown to be linked to the presence of 

refractory minimal residual disease (MRD) [4– 6].  The bone marrow is the most 

common site of ALL MRD, and consequently, the most common site of relapse [7]. 

Consistent with relapse in the bone marrow microenvironment (BMM), we and others 

have shown that bone marrow stromal cells (BMSC) and osteoblasts (HOB) provide 

protection to leukemic cells during chemotherapy treatment [8– 16]. However, the cell 

signaling pathways by which the BMM influences tumor cells to provide this protection 

remains incompletely understood.   

 While there are many diverse signaling pathways that converge on the 

phenotype of any tumor in response to microenvironment derived cues, the focus of the 

current investigation is on the modulation of ALL cell BCL6.  BCL6 is a proto-oncogene 

that has been classically described in the setting of its influence on germinal center B-

cells, as well as its role in the progression of diffuse large B-cell lymphoma [17– 28]. In 

these contexts, BCL6 has been well characterized as a regulator of B-cell proliferation, 

maturation, and resistance to DNA damage [29]. More recent work has highlighted the 

impact of BCL6 on immature and malignant hematopoietic cells. Increased expression 

of BCL6 in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia 

(ALL) has been shown to protect leukemic cells from chemotherapy induced DNA 
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damage through the repression of p53 induced apoptosis [30, 31]. These studies, in 

addition to earlier work in germinal center biology, reflect the ability of BCL6 to influence 

leukemic cell phenotype through regulation of survival, differentiation, and cell cycle 

progression. 

 To address a fundamental gap that exists in understanding how the BMM 

impacts leukemic BCL6 we utilized the previously described in vitro model in which 

phase dim (PD) ALL cells migrate beneath BMSC or HOB and exhibit a chemotherapy-

resistant phenotype. Our laboratory has previously characterized this dynamic in vitro 

model in which ALL cells seeded onto BMSC or HOB transiently migrate beneath the 

bone marrow stromal layer, generating the “phase dim” population  [13, 15]. This 

population of ALL cells was characterized by quiescence and chemotherapy resistance 

while in this in vitro niche.  However, removal from beneath the stromal layer results in a 

return to chemotherapy sensitivity  [13]. Furthermore, this PD characteristic was specific 

to ALL cells co-cultured with BMSCs or HOBs, as PD populations, which readily 

migrated beneath co-cultures comprised of non-bone marrow derived adherent layers, 

were not protected from chemotherapy-induced death [13] suggesting the observed 

effect is not simply physical protection from cytotoxic drugs. Utilizing this co-culture 

model to represent BMM protected and resistant ALL cells we found that co-culture with 

BMSC or HOB reduced the abundance of tumor cell BCL6, coincident with increased 

survival and quiescence of a subset of tumor cells in contact with BMSC or HOB. 

Furthermore, chronic forced expression of BCL6 in this quiescent tumor cell population 

resulted in sensitization to chemotherapy. These observations suggest that the BMM 

influenced leukemic cell BCL6 protein abundance has the potential to contribute to the 
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generation of a quiescent, drug resistant population of tumor cells and that strategies 

aimed at disruption of this pathway may prove to be an effective means by which to 

diminish MRD and relapse of ALL.      

Results 

Co-culture with BMSC or HOB reduces BCL6 in ALL cells.   

Both the BMM in general, and BCL6 specifically, have independently been shown to 

regulate ALL survival [11– 14, 30, 31].  However, it has not been determined whether 

there is a functional link between bone marrow niche derived signals and ALL cell 

abundance of BCL6. To determine whether BMM cells regulate BCL6 protein levels in 

leukemic cells, ALL cell lines were grown in co-culture with either BMSC or HOB and 

compared to tumor cultured in media alone. Co-culture derived tumor cells were further 

sub-divided into distinct populations that included suspended (S), phase bright (PB), 

and phase dim (PD) leukemic cells based on their spatial location within the co-culture.  

We have previously observed that in vitro location related to BMSC or HOB stromal 

cells impacts ALL survival in co-culture during chemotherapy exposure, with the PD 

population of leukemic cells being the most resistant to chemotherapy exposure [13, 15] 

providing an opportunity to focus studies uniquely on the most resistant subpopulation 

of tumor cells. In the current study, regardless of the fraction of ALL cells evaluated, 

decreased BCL6 protein abundance was observed in ALL cells co-cultured with BMSC 

or HOB, with the most pronounced reduction consistently observed in the PD population 

(Figure 1 A-B). Of note, under normal culture conditions there is no difference in ALL 

cell viability between cells cultured in media alone compared to those in the co-culture 

conditions (DNS) supporting the observation that changes in BCL6 abundance are not 
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due to selective pressure of the different culture conditions, but are a result of 

interactions with the BMSC or HOB.  Consistent with western blot observations, flow 

cytometry and confocal microscopy analysis of REH and Nalm-27 cell lines showed that 

leukemic cells recovered from the PD population of BMSC or HOB co-culture had 

reduced BCL6 protein abundance compared to tumor cells cultured in media alone 

(Figure 1B and D). Consistent with data derived from cell lines, ALL patient derived cells 

co-cultured with BMSC or HOB also had decreased BCL6 protein levels compared to 

cells grown in media alone (Figure C and E).        

Modulation of BCL6 alters ALL cell cycle progression and proliferation rate. 

Based on reports of BCL6 abundance influencing proliferation of B-cells [32– 35], we 

determined the functional consequence of BCL6 downregulation on ALL cell 

proliferation and cell cycle progression. Inhibition of BCL6 with the small molecule 

inhibitor 79-6 resulted in a significant decrease in expansion of ALL cells in media alone 

compared to DMSO solvent controls (Figure 2A) without an effect on tumor cell viability 

(Figure 2B). Proliferation of ALL cells was reduced by BCL6 inhibition as reflected by a 

significant reduction in the proliferation index of ALL cells exposed to 79-6 (Figure 2C). 

Consistent with reduced ALL cell number and proliferation, BCL6 inhibition altered cell 

cycle progression in ALL cells as shown by an increase in G0/G1 phases and reduction 

in S and G2/M phases (Figure 2D). Because there is always concern regarding the 

potential for non-specific effects when using small molecule inhibitors, we generated 

lentiviral based shRNA knockdown of BCL6 in REH cells.  This more specific targeted 

approach resulted in diminished proliferation as determined by a decrease in cell 

density over time relative to vector controls (Figure 2E; left panel). Conversely, 
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overexpression of BCL6 in REH cells increased cell density compared to vector controls 

in a time course assay (Figure 2E; right panel). Knockdown of BCL6 also significantly 

increased the percentage of REH tumor cells in G0/G1 phases and reduced G2/M 

phases in line with the observed reduction of cell density in the time course assay 

(Figure 2F; left panel). Overexpression of BCL6 decreased the fraction of ALL cells in 

G0/G1 phases and increased tumor numbers in S phase (Figure 2F; right panel), 

although these changes were not statistically significant their trend is consistent with the 

cell density assay.  

BCL6 expression in ALL cells impacts abundance of cell cycle regulatory protein 

cyclin D3.  

Cyclin D3 has been shown to be an important cell cycle regulatory protein in germinal 

center B-cells, which is also a site where BCL6 is actively modulated to promote 

proliferation [36]. Based on these observations, we investigated whether BCL6 

modulation impacts expression of cyclin D3. Consistent with BCL6 protein levels, cyclin 

D3 protein abundance was decreased in PD REH and Nalm-27 ALL cells compared to 

tumor cells grown in media alone (Figure 3A). Knockdown of BCL6 in ALL cells reduced 

the protein abundance of cyclin D3, and BCL6 overexpression increased cyclin D3 

protein levels (Figure 3B). In addition, chemical inhibition of BCL6 by 79-6 led to 

diminished cyclin D3 protein abundance in ALL cells (Figure 3C).        
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Chronic overexpression of BCL6 sensitizes the chemotherapy-resistant PD 

population to chemotherapy.  

Many ALL chemotherapy regimens rely on tumor cell proliferation as a requirement for 

optimal induction of cell death. Consequently, these strategies tend to be less effective 

against quiescent tumor cells [12, 37]. With the observation that reduced BCL6 in PD 

ALL cells results in a quiescent phenotype, we aimed to investigate strategies that 

target this chemotherapy-resistant population through modulation of BCL6. REH tumor 

cells with constitutive overexpression of BCL6 in the PD population showed a significant 

reduction in viability when compared to vector controls following exposure to 

chemotherapy (Figure 4A). PD tumor cells were “rescued” from BCL6 overexpression 

by BCL6 chemical inhibition, as demonstrated by the increase in PD REH cell viability 

following 79-6 and chemotherapy exposure relative to the overexpression only cells 

(Figure 4A). Based on this observation we identified chemical compounds that influence 

BCL6 protein levels. MG132 and caffeine have been shown to increase BCL6 protein 

abundance in cells by preventing the degradation of BCL6 [27]. While it is appreciated 

that neither MG132 or caffeine are specific regulators of BCL6, and that the effects of 

either could be on an upstream modulator of BCL6, our findings showed that MG132 or 

caffeine exposure resulted in increased BCL6 protein in ALL cells (Figure 4B). Given 

that PD cells have less BCL6 and are more resistant to chemotherapy, we investigated 

whether MG132 or caffeine exposure increased BCL6 in PD ALL cells. Exposure to 

either MG132 or caffeine increased BCL6 protein abundance in PD ALL cells (Figure 

4C). Consistent with our previously published data [13, 15], PD ALL cells in both BMSC 

and HOB are protected from chemotherapy exposure relative to their media alone 
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counterparts as indicated by significantly increased viability following Ara-C exposure 

(Figure 4D). However in both REH and Nalm-27 cells, pretreatment with MG132 or 

caffeine 6 hours prior to Ara-C exposure sensitized the resistant PD ALL cell population 

to chemotherapy-induced death as shown by a significant reduction in cell viability 

compared to the group treated with Ara-C alone (Figure 4D).         

Forced expression of BCL6 in ALL cells increases chemotherapeutic response.  

Residual tumor cells in the bone marrow following chemotherapy treatment is a 

prognostic indicator of patient outcome [4– 6]. Based this well-established indicator we 

evaluated tumor burden in the bone marrow of NOD-SCID gamma (NSG) mice 

following treatment with chemotherapy (Figure 5A). Although not statistically significant 

mice injected with ALL cells overexpressing BCL6 had a lower median percentage 

(45.6% GFP+) of human tumor cells compared to those injected with vector control cells 

(54.1% GFP+) 24 hours after the conclusion of Ara-C treatment (Figure 5B). Because 

MG132 and caffeine sensitized the chemotherapy-resistant PD ALL cells to 

chemotherapy in vitro (Figure 4D), we investigated whether MG132 or caffeine could 

increase event free survival in a NSG model of ALL disease (Figure 5C). Corresponding 

to the in vitro observations, mice pretreated with caffeine 6 hours prior to Ara-C 

treatment had significantly increased event free survival time compared to mice treated 

with Ara-C only (Figure 5D). 

Discussion 

In the current study, we investigated the role that bone marrow stromal cells and 

osteoblasts have on the modulation of BCL6 levels in ALL, and the influence of BCL6 
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on resistance to chemotherapy. While there are numerous established BMM 

interactions that regulate ALL proliferation and chemotherapy resistance, to our 

knowledge this work represents the first time microenvironment regulation of ALL BCL6 

abundance has been explored. Utilizing BMSC and HOB as just two representative 

elements of the protective BMM niche, we observed that co-culture reduces tumor cell 

BCL6 expression compared to ALL cells cultured in media alone (Figure 1) and that 

removal of ALL cells from the PD “niche” buried beneath BMSC or HOB to media alone 

results in increased BCL6 protein abundance (DNS). The reduction of BCL6 in ALL cells 

that are in co-culture with bone marrow derived adherent stromal cells or osteoblasts is 

most pronounced in the PD sub-population of ALL cells, which we have previously 

reported as the most quiescent and refractory to chemotherapy [13, 15]. The quiescent 

phenotype appears to be regulated, in part, through BCL6 impact on ALL cell cycle 

progression. Both chemical inhibition and targeted knockdown of BCL6 in ALL cells 

resulted in diminished proliferation and accumulation of cells in the G0/G1 phase of cell 

cycle (Figure 2). Likewise, increased abundance of BCL6 led to sustained proliferation 

and a higher percentage of cells in S phase (Figure 2) when compared to vector control 

cells. The ability of BCL6 to regulate the transition of cells between quiescent and 

proliferative states is reminiscent of its function in germinal center B-cells where 

elevated BCL6 acts to promote high rates of proliferation [33– 35]. Consistent with the 

broadly recognized complexity of the impact of BCL6 on cell fate, it has been shown 

that, in contrast to our findings, BCL6 upregulation in some settings promotes a 

quiescent phenotype  [38– 40]. These differences are not surprising as BCL6 is known 

to interact with, and regulate, a variety of cellular programs in a context dependent 
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manner  [reviewed 41– 43] and highlights the importance of investigating BCL6 in the 

specific setting of microenvironment regulation and to interpret observations with the 

appropriate model driven limitations in mind. In the current study, we show that BCL6 

influences proliferation of ALL cells and that its abundance is influenced by the 

interaction with elements of the BMM (Figure 1 and 2). In addition, our observations 

suggest that cyclin D3 protein levels in ALL cells are, in part, regulated by BCL6. Both 

chemical inhibition and more specific shRNA knockdown of BCL6 in ALL cells reduced 

cyclin D3 levels with BCL6 overexpression correlated with increased cyclin D3 protein 

abundance (Figure 3). This observation is significant as cyclin D3 has been reported to 

be an important regulator of mature and immature B-cell cell cycle progression through 

G1 phase [36, 44, 45]. While the precise mechanism by which the BMM is regulating 

BCL6 abundance in ALL cells remains unknown, one possibility that warrants 

consideration is that BCL6 protein being regulated via niche derived cues that impact on 

phosphorylation, targeting it for proteasomal degradation. Based on previously 

described pathways that regulate BCL6 [27, 46, 47] and our observations using 

proteasome inhibitors (Figure 4), as well as, the lack of significant change in BCL6 

mRNA levels in tumor cells co-cultured with BMSC or HOB (DNS), regulation at the 

protein level is implicated. Future work which focuses investigation on this potential 

mechanism will be important, however this is beyond the scope of the current study. 

While additional studies will be required to focus on a greater understanding of the 

interactions between the BMM and ALL cells that drive the reduction in BCL6, our 

results suggest that the quiescent phenotype exhibited by ALL cells in the BMM niche is 
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in part modulated through microenvironment regulation of ALL cell BCL6 protein. This in 

turn appears to regulate cell cycle progression, potentially through control of cyclin D3. 

In both normal and malignant B-cells, increased expression of BCL6 has been 

shown to promote cell survival through inhibition of the p53 pathway, which allows for 

tolerance to DNA damage within cells [20, 30, 31]. In ALL cells, increased expression of 

BCL6 results in a tolerance to DNA damage and subsequently increased survival during 

BCR–ABL1 kinase inhibition [30].  Conversely, our observations suggest that decreased 

abundance of BCL6 subsequent to interaction of leukemic cells with BMSC or HOB can 

also protect ALL cells from death through induction of a quiescent phenotype. 

Furthermore, chronic overexpression of BCL6 appears to sensitize tumor cells to 

chemotherapy exposure coincident with increased ALL cell proliferation and blunted 

tumor cell quiescence (Figure 2 and 4). We speculate based on the work of others, as 

well as these observations that dynamic regulation of BCL6 in ALL regulates survival 

when challenged by stress such as chemotherapy. These observations suggest that 

increased BCL6 protein levels during chemotherapy may allow tolerance of DNA 

damage, with subsequent downregulation of BCL6 required for cells to enter a 

quiescent state during which DNA can be repaired. Interference of this dynamic 

balance, such as that imposed by chronic sustained expression of BCL6, appears one 

way in which to sensitize BMM protected ALL cells to chemotherapy treatment (Figure 

4-5). Due to the complexities of both BMM signaling and BCL6 regulation, additional 

studies will be needed to determine how these dynamic regulatory pathways affect 

survival pathways including p53, ATM/ATR, and BCL family proteins within ALL cells 

and how this may promote resistant disease in the marrow niche.     
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Consistent with the in vitro findings, in vivo chronic overexpression of BCL6 

during Ara-C treatment resulted in a modest reduction in the tumor burden in femurs of 

mice when collected 24 hours following the conclusion of Ara-C treatment (Figure 5B). 

In addition, using a model based on that which was previously described with the 

readout of  event free survival  [48– 50], we observed  that caffeine pre-treatment, 

shown to increase BCL6 [27], significantly extended event free survival in a NSG mouse 

model of ALL (Figure 5D). While recognizing that caffeine does not specifically target 

BCL6 exclusively, it may serve as a safe tool to, at least in part, modulate BCL6 

expression.  Diminished tumor burden in the bone marrow and  event free survival have 

both been shown to be significant prognostic indicators of patient outcome in response 

to chemotherapy [5, 7, 51] and these findings illustrate the significance of the observed  

increase in event free survival time of mice following combination treatment with 

caffeine and Ara-C. We also hypothesize that this type of combination treatment 

strategy might be advantageous during consolidation therapy as a means to “activate” 

residual quiescent ALL cells to be better targeted by cytotoxic regimens. In this context, 

caffeine is an attractive treatment strategy due to its long history of safe use in humans 

[52] and our results which show it can sensitize microenvironment protected ALL cells to 

chemotherapy treatment (Figure 4-5). As with all models in immunocompromised mice 

there are limitations to interpretation, however, they serve as an important setting in 

which to test general concepts and to identify potentially important pathways around 

which to focus novel intervention strategies.       

In summary, the goal of this study was to investigate how BMSC and HOB, 

components of the protective bone marrow niche, would influence the levels of BCL6 in 
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ALL cells. We report that ALL cell lines, as well as primary patient samples, co-cultured 

with BMSC or HOB, have reduced BCL6 protein. This reduction in BCL6 abundance 

was most pronounced and consistently observed in leukemic cells recovered from the 

PD population, which we have previously characterized as a chemotherapy-resistant 

population representative of resistant tumor populations [13, 15]. Decreased BCL6 in 

ALL cells affects the cell cycle profile and promotes a quiescent phenotype. This 

phenotype appears to be coincident with BCL6 reduction and decreased cyclin D3; a 

consequence that has been reported to regulate progression through the G1 phase of 

cell cycle [36, 44, 45]. Chronic overexpression of BCL6, achieved either through 

overexpression vectors or chemical intervention by MG132 or caffeine, sensitized ALL 

cells that are generally protected by BMSC or HOB from chemotherapy induced death. 

Furthermore, combination treatments using caffeine to stabilize BCL6 levels followed by 

Ara-C exposure significantly increased the event free survival of mice in which ALL had 

been established. Collectively, these results suggest that strategies which disrupt 

microenvironmental regulation of BCL6 in ALL cells may be an effective strategy to 

sensitize quiescent, chemotherapy-resistant leukemic cells to treatment, eliminating 

MRD in the protective bone marrow niches and reducing the incidence of relapse.  

Methods 
 

Cell lines and culture conditions 

Philadelphia chromosome positive (Ph+) lymphoblastic cell lines Nalm-27 (Fujisaki 

Cancer Center) and Sup-B15 (ATCC-CRL-1929), and Ph- REH (ATCC#CRL-8286) 

were utilized. De-identified primary human leukemic cells were acquired from the West 

Virginia University Health Sciences Center and West Virginia University Cancer Institute 
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tissue bank. Primary patient sample 1 (P1) is a MLL rearranged (11q23) B-lineage ALL 

isolated from a 43 year old female at diagnosis.  Primary patient sample 2 (P2) is a (Ph-) 

B-cell ALL/LBL isolated from a 65 year old male at diagnosis (45-46, XY, t(4-

11)(q21;q23), add (6)(p25), -21, +1-2mar[12]/46, XY[8]). De-identified primary bone 

marrow stromal cells (BMSC) were provided by the West Virginia University Cancer 

Institute Biospecimen Processing Core and the West Virginia University Department of 

Pathology Tissue Bank. BMSC cultures were established as previously described [53]. 

Human osteoblasts (HOB; PromoCell) were cultured according to the supplier’s 

recommendations. Co-cultures of adherent bone marrow derived supportive cells and 

ALL cells were established by seeding leukemic cells onto 80-90% confluent BMSC or 

HOB monolayers. Cultures were fed every 4 days and tumor cells collected for inclusion 

in experiments. Remaining leukemic cells were moved to new primary BMSC or HOB 

adherent layers every 12 days. Cultures were maintained in 5% O2 to model normal 

bone marrow oxygen tension, reported to range from 1-7% [54, 55]. Suspended (S) 

leukemic cells floating freely in the media; phase bright (PB) tumor cells, that were 

loosely adherent to the top of BMSC or HOB; and phase dim (PD) leukemic cells that 

were buried firmly beneath adherent BMSC or HOB were collected as distinct 

populations as previously described [13, 15]. The S, PB, and PD tumor populations 

were separated from BMSC or HOB by size exclusion with G10 Sephadex (Sigma) 

column separation as previously described [13, 15, 56]. 

Flow Cytometric quantification of BCL6 expression  

REH and Nalm-27 tumor cells were cultured and PD ALL cells were harvested as 

described above. P1 and P2 were cultured in media alone or co-cultured with BMSC or 
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HOB for 2 days prior to analysis to utilize them prior to significant loss in viability. 

Experiments that included primary tumor cells required collection of all tumor that was in 

physical contact with the BMSC or HOB (PB + PD) to provide sufficient numbers for 

analysis. ALL cells were stained using Cell Signaling Technology’s recommended 

protocol for intracellular BCL6 staining using primary antibodies rabbit anti-BCL6 (Cat # 

14895) (1:300) or Rabbit (DA1E) mAb IgG XP isotype control (Cat # 3900). Cells were 

washed with 1x PBS and incubated with secondary antibody goat anti-rabbit Alexa Flour 

647 (Invitrogen; Cat # A21244) [1 µg/mL]. Collection and analysis were performed using 

the LSRFortessa (Becton Dickenson, San Jose, CA, USA). 

Immunofluorescence imaging 

Confocal images were acquired using an upright LSM 510 Zeiss microscope and 

processed using Zen2009 software and Adobe Photoshop with fluorescence intensity 

held constant for any experiment in which image acquisition was compared across 

samples. ALL cells were cytospun on glass slides following G10 Sephadex purification. 

Cells were fixed with 4% PFA, blocked in 1x PBS/ 5%FBS/ 0.3% Triton X-100, washed 

with 1x PBS, and incubated with rabbit anti-BCL6 (Cell Signaling Technology, Cat # 

14895) (1:100) followed by anti-rabbit Alexa 647 (Invitrogen; Cat # A21244) (1:200). 

Slides were washed with PBS and mounted to coverslips using Prolong® Gold anti-

fade/DAPI overnight (Life Technologies). 

Cell proliferation assay 

ALL cells were labeled using the cell retention dye CellTrace-CFSE Cell Proliferation Kit 

(Life Technologies, Cat # C34554) as described by the manufacturer. Cells were then 
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cultured under normal growth conditions for 2 days in either media DMSO control or 

media with 79-6. CellTrace fluorescence intensity was measured by flow cytometry 

using FACSFortessia. Proliferation indices were calculated using FCS Express4.   

Cell cycle analysis 

ALL cells were fixed in 70% ethanol, treated with RNase (Sigma), and stained with 

propidium iodide (PI) for DNA analysis. All samples were performed in triplicate, 

processed on a FACSFortessia flow cytometer and analyzed using FCS Express4 

software. 

Western blot analysis  

Rabbit polyclonal BCL6 (Cat # 5650) and Cyclin D3 (Cat # 2936) were purchased from 

Cell Signaling Technology and used at 1:1000 dilution.  Mouse polyclonal anti-GAPDH 

was purchased from Fitzgerald Inc. (Cat # 10R-G109a). Proteins were resolved on 

SDS-PAGE gels and transferred to nitrocellulose membranes. Membranes were 

blocked in TBS 5%/nonfat dry milk 0.05% Tween-20 and probed with the indicated 

primary antibodies. After incubation with horseradish peroxidase–conjugated secondary 

antibodies, signal was visualized using enhanced chemiluminescence reagents 

(Amersham). Western blots are representative of at least 3 independent experiments.  

Densitometry quantification is indicated and was completed using ImageJ software. 

Drugs and chemotherapeutic reagents 

Cytarabine (Ara-C) (Selleckchem, Cat # S1648), Methotrexate (MTX) (Selleckchem, Cat 

# S1210), Vincristine (VCR) (Selleckchem, Cat # S1241), MG132 (Selleckchem, cat # 

S2619), Caffeine (Sigma-Aldrich, Cat # C0750), and 79-6 (Calbiochem, Cat # 197345) 
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were diluted and stored per manufacturer recommendations. For in vitro experiments 

drug stocks were diluted in base media and for in vivo experiments stocks were diluted 

in saline immediately prior to use. In vitro concentrations of Ara-C [1 µM], MTX [50 µM], 

VCR [25 µM], MG-132 [1-5 µM], caffeine [2.5-10 mM], and 79-6 [125 µM] were used to 

approximate clinically relevant doses in ALL or published in vitro concentrations [27, 

57– 63].  

Evaluation of leukemic cell concentration and viability 

ALL cells were cultured in media alone or co-cultured with BMSC or HOB for 4 days to 

establish the PD tumor population. On day 4 cultures were provided fresh media and 

exposed to Ara-C, MTX, or VCR for 4 additional days. Cells treated with Ara-C were re-

treated at 48 hours. 79-6, MG132, or caffeine were added 6 hours prior to 

chemotherapy in combination experiments. Viability and cell number were evaluated by 

trypan blue exclusion in triplicate. 

BCL6 knockdown and overexpression 

Human TRIPZ lentiviral inducible shRNAmir constructs to BCL6 clone ID numbers 

V3THs_404721 (KD1) and V2THS_132926 (KD3) were purchased from Thermo 

Scientific. Viral particles were produced and administered to REH ALL cells according to 

manufactures protocol. shRNA expression was induced using doxycycline [1ug/mL] and 

RFP positive cells were sorted by flow cytometry.   

BCL6 overexpression vector was generated by removing the BCL6 gene sequence from 

the MSCV-BCL6-IRES-GFP [40] which was purchased from Addgene (Plasmid 31391). 
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BCL6 fragment was then ligated into pLVX-EF1α-IRES-ZsGreen1 plasmid (Clontech 

Laboratories, Inc. Cat# 631982). 

Mice 

All experimental procedures involving NOD/SCID Gamma (NSG) mice were approved 

by the West Virginia University Institutional Animal Care and Use Committee. Male 

NOD/SCID Gamma (NSG) mice age 5-6 weeks were acquired from the West Virginia 

University NSG colony or purchased from the Jackson Laboratory. To determine 

whether chronic BCL6 overexpression would sensitize ALL cells to chemotherapy 

treatment, resulting in reduced tumor burden in the bone marrow, NSG mice were 

divided into two groups and tail vein injected with 2 x106 REH cells expressing 

BCL6/GFP or vector/GFP control. Peripheral tumor burden was monitored via tail vein 

draws to collect approximately 30µL of blood. Red blood cells were lysed (150 mM 

NH4Cl, 10 mM NaHCO3 and 0.1 mM EDTA in distilled water) and ALL cell frequency 

was evaluated by flow cytometry analysis of GFP positive human cells relative to total 

mononuclear cells. Chemotherapy treatment began when the peripheral blood burden 

of the group reached 1-5% GFP positive cells which has been previously reported to 

indicate established leukemic disease [48].  Ara-C treatment was administered by 

intraperitoneal (IP) injection at a concentration of 100 mg/kg daily for 3 consecutive 

days. Mice were euthanized 24 hours after the final Ara-C treatment and bone marrow 

was collected from femurs to quantify percentage of GFP positive tumor cells in the 

bone marrow by flow cytometry. 

To determine whether combination treatment of mice with the BCL6 modulating 

agents MG132 or caffeine would sensitize ALL cells to chemotherapy, 2x106 REH cells 
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expressing the vector/GFP construct were injected via tail vein to establish leukemic 

disease. Tumor burden was monitored as previously described. When peripheral blood 

burden of the group reached an average of 1-5% GFP positive cells relative to total 

mononuclear cells, mice were randomly assigned to treatment groups. Treatments 

included saline control, MG132 [1 mg/kg], Caffeine [50 mg/kg], Ara-C [100 mg/kg], 

MG132 [1mg/kg] + Ara-C [100 mg/kg], or Caffeine [50 mg/kg] + Ara-C [100 mg/kg]. All 

drugs were diluted in saline prior to injection and were administered by IP injection. 

MG132 and caffeine were given 6 hours before treatment with Ara-C with mice treated 

for 3 consecutive days. Event free survival (EFS) was calculated from the start of 

treatment as previously described [48] with an event defined as 25% GFP positive cells 

in the peripheral blood by flow cytometric analysis or when mice showed clinical signs of 

disease (lethargy, weight loss, ruffled fur).     

Statistical analysis 

All data are presented as mean ± standard error and the statistical significances 

between conditions was determined by the student’s t test or 2-way ANOVA with Holm-

Sidak post-hoc test using GraphPad or SigmaPlot software. All in vitro results generated 

from cell line derived data are representative of at least 3 independent experiments. 

Experiments with primary patient samples are representative of at least 2 independent 

experiments. Kaplan-Meier survival curves were generated for event free survival and a 

fitted Cox model was used to determine p-values. 
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Figure legends 
 

Figure 1. Co-culture with BMSC or HOB reduces BCL6 in ALL cells. A. BCL6 

protein in REH and Nalm-27 ALL cells when co-cultured with BMSC or HOB cells 

relative to media (M) controls as shown by western blot analysis. B. Flow cytometry 

analysis of REH and Nalm-27 ALL cell BCL6 protein levels when removed from the PD 

population compared to cells in media alone as shown by median florescence intensity 

(MFI). C. MFI of Patient 1 (P1) and Patient 2 (P2) when in physical contact with BMSC 

or HOB compared to those in media alone (ND= not detected). D. Confocal microscopy 

images of REH and Nalm-27 for BCL6 (yellow) and DAPI (Blue) in cells cultured in 

media alone compare to those recovered from the PD population of BMSC or HOB co-

culture. E. P1 and P2 BCL6 confocal staining of media alone cells relative to those in 

contact with BMSC or HOB. Scale bar = 10µm.    

Figure 2. Modulation of BCL6 alters cell cycle progression and proliferation of 

ALL cells. A.- B. Cell density and viability of REH, Sup-B15, and Nalm-27 following 

exposure to the small molecule BCL6 inhibitor 79-6 (125µM) relative to DMSO controls 

as shown by trypan blue exclusion cell counts. C. Proliferation index of 79-6 treatment 

of REH, Sup-B15 and Nalm-27 ALL cells compared to DMSO controls using a CSFE 

cell retention dye flow cytometry analysis. D. Propidium iodide (PI) DNA staining for cell 

cycle assessment of REH, Sup-B15 and Nalm-27 treated with 79-6 compared to DMSO 

controls. E. Cell density of shRNA knockdown of BCL6 (KD1 and KD3) (left panel) and 

BCL6 overexpression (BCL6 OX) (right panel) of REH cells over time compared to 

vector controls as evaluated by trypan blue exclusion counts. F. Cell cycle analysis of 

BCL6 knockdown (left panel) and BCL6 overexpression (right panel) in REH cells using 
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PI staining. (* = p<0.05 for 79-6 treated cells or knockdown/overexpression cells 

compared to DMSO or vector controls, respectively).   

Figure 3. BCL6 modulates the cell cycle regulating protein cyclin D3. A. Western 

blot analysis of protein abundance of BCL6 and cyclin D3 in REH and Nalm-27 cells in 

media alone compared to PD cells recovered from BMSC or HOB co-culture. B. 

Comparison of REH BCL6 knockdown and overexpression to vector controls for BCL6 

and cyclin D3 protein levels by western blot. C. Protein analysis by western blot of cyclin 

D3 in REH and Nalm-27 cells when exposed to 79-6.  

Figure 4. Forced expression of BCL6 sensitizes PD ALL cells to chemotherapy 

exposure. A. Viability comparison of REH vector control, BCL6 overexpression, or 

BCL6 overexpression cells pre-treated with 79-6 (125µM) following exposure to three 

chemotherapy drugs (Ara-C [1 µM], MTX [50 µM], VCR [25 µM]). (* = p<0.05 BCL6 OX 

to vector control and # = p<0.05 BCL6 OX to BCL6 + 79-6). B. REH and Nalm-27 BCL6 

protein dose response to MG132 and caffeine as shown by western blot. C. Western 

blot analysis to determine BCL6 protein abundance of REH and Nalm-27 cells when 

exposed to MG132 or caffeine when recovered from media alone, and the PD 

population of BMSC or HOB co-culture. D. REH and Nalm-27 cell viability following 

exposure to Ara-C alone or when pre-treated with MG132 or caffeine 6 hours prior to 

Ara-C exposure to compare cells in media alone to those recovered from the PD 

population of BMSC or HOB co-culture. (# = p<0.05 PD ALL cells from BMSC/HOB 

relative to media and *= p<0.05 Ara-C + MG132/ Ara-C + caffeine relative to Ara-C only 

treatment).  
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Figure 5. In vivo sensitivity to Ara-C is increased by BCL6 overexpression or pre-

treatment with caffeine. A. Schematic of NSG mouse experiment to determine GFP+ 

ALL burden in the femurs of NSG mice. B. Box plot representation of median 

percentage of GFP+ REH ALL cells relative to total mononuclear cells recovered from 

femurs of NOD-SCID Gamma (NSG) mice infected with REH vector control (n=5) or 

REH BCL6 overexpression (n=4) ALL cells following three consecutive days of Ara-C 

treatment. C. Schematic of NSG mouse experiment to determine event free survival of 

mice pre-treated with BCL6 modulating drugs MG-132 or caffeine. D. Event free survival 

of NSG mice following treatment with Ara-C (n=5), MG-132 + Ara-C (n=6), or caffeine + 

Ara-C (n=6) (* =p<0.05 Ara-C relative to caffeine+ Ara-C).    
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Figures 
 

 

Figure 1. Co-culture with BMSC or HOB reduces BCL6 in ALL cells. 
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Figure 2. Modulation of BCL6 alters cell cycle progression and proliferation of ALL cells. 
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Figure 3. BCL6 modulates the cell cycle regulating protein cyclin D3. 
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Figure 4. Forced expression of BCL6 sensitizes PD ALL cells to chemotherapy exposure. 
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Figure 5. In vivo sensitivity to Ara-C is increased by BCL6 overexpression or pre-

treatment with caffeine. 

 



www.manaraa.com

 

125 
 

 

 

 

 

 

Chapter 5 

 

 

General Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

126 
 

Modern chemotherapy regimens have transformed the once 100% fatal disease 

of acute lymphoblastic leukemia into a malignancy that has one of the best prognoses 

among all cancers. While diverse age groups are diagnosed with ALL, it is most 

common in children between the ages 2-5 years old1,2. The predominance of this 

disease in the pediatric population highlights concerns about the necessity of dose 

escalated chemotherapy and repeated exposure to cytotoxic drugs as noted in Chapter 

1.  The positive aspect of ALL treatment is that the 5-year relative survival for all ALL 

patients has risen from 31% in 1975 to 67.5% based on data collected from 2005-

20112. In addition to increased 5-year survival rates, complete remission rates for both 

children and adults has steadily improved with complete remission achieved in greater 

than 90% of childhood cases and more than 80% of adult cases1–3. These results 

indicate the great strides that have been achieved in the treatment of this disease. Yet, 

the overall 5-year survival rate of 67.5% indicates that a number of patients who 

achieve initial remission will subsequently relapse. Relapse of ALL occurs at a rate of 

20-25% in children and greater than 50% of adult cases4–8. Relapse of ALL is often 

coincident with aggressive disease and poor prognosis and highlighted in Chapter 1. Of 

clinical significance is the frequency with which ALL relapse arises from the bone 

marrow. Relapse from this anatomical site, as well as the length of the initial remission, 

is associated with a poor prognosis relative to events arising later and from other 

sites9,10. Based on this observation, research focused on the interactions between the 

BMM and ALL that promote chemotherapy resistance disease is of significant 

importance in the continued progression toward eradication of ALL.  
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 To address questions centered on crosstalk between the BMM and ALL that 

result in refractory disease, we aimed to improve current in vitro co-culture models to 

better model the most chemotherapy resistant ALL cells supported by the bone marrow 

niche. Work using normal CD34+ hematopoietic cells in co-culture with MSCs revealed 

that hematopoietic cells will interact with an adherent monolayer of MSCs to form three 

distinct spatial populations of hematopoietic cells11. This group termed the 

subpopulations that form as suspended (S), which are cells freely floated in the media; 

phase bright (PB) that adhered to the surface of the MSCs; and the phase dim (PD) 

which buried beneath the MSC monolayer11. In these distinct subpopulations, it was 

noted that proliferation and differentiation of the CD34+ cells was influenced by their 

location within the co-culture11. As highlighted in Chapters 2 and 3, we built upon these 

findings to determine whether ALL cells in co-culture with BMSC or HOB would form 

three spatial populations in relation to the adherent monolayers. We found that ALL 

cells, similar to their normal hematopoietic counterparts, readily established three 

populations within the co-culture system12,13. To accurately, efficiently, and reproducibly 

generate this ALL co-culture model we created the protocol provided in Chapter 2 for 

the establishment, maintenance, and recovery of ALL cells in an in vitro model to 

provide us a source of leukemic cells that would represent the most treatment refractory 

component of the disease (PD cells)12. One important finding from this study was that 

for this system to provide accurate and reproducible results, the cultures had to be 

maintained using a strict feeding and passage (culturing) schedule in which co-cultures 

were fed at 4 day intervals and transferred to new BMSC or HOB layers every 12 

days12. To enhance the usefulness of this model, we combined it with the previously 
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described gel type 10 cross-linked dextran (G10) particle columns14, to provide an 

efficient method for separation of the ALL cells from the adherent monolayers. The 

ability to generate and separate the three distinct ALL populations allowed us to 

address questions related to potential differences in the phenotypes of the ALL 

populations based on their spatial location in relation to BMSC or HOB. It is well 

established that one critical consequence of leukemic cells interacting with BMSCs and 

HOBs, both in vitro and in vivo, is an increase in chemotherapy resistance12,13,15–21. We 

found that ALL cells of the PD population were the most chemotherapy resistant relative 

to the other populations, noted above. This important observation lead us to further 

characterize the PD population to determine the functional consequences that result 

from this intimate relationship between the ALL cells and the BMM in this in vitro model 

of treatment resistant ALL. 

Based on the observation that PD ALL cells are the most chemotherapy resistant 

population in our co-culture model, we sought to investigate potential phenotypic 

changes in the PD population that contribute to chemotherapy resistance. Furthermore, 

we evaluated whether PD cells are unique based on intrinsic factors of the leukemic 

cells or if the protection is mediated by the specific interactions with the bone marrow 

niche cells. Consistent with the observations described in Chapter 2, we found that a 

variety of ALL cell lines interact with BMSC and HOB in co-culture and readily form 

three populations (S, PB, and PD), as highlighted in Chapter 313. Additionally, we 

investigated whether the three individual groups of ALL cells had specific affinity for the 

location from which they were isolated. This is important as ALL disease is known to be 

very heterogeneous, often leading to generation of subclones which are chemotherapy 
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resistant6. However, we found through the use of labeling and tracking experiments that 

tumor cells recovered from any spatial location (S, PB or PD) were able to reestablish 

the other two subpopulations when placed onto a new BMSC or HOB monolayer13. 

These findings show that ALL cells in our co-culture model behave in a dynamic 

manner, readily moving in and out of different niches within the culture. This provides 

the theoretical opportunity of forcing tumor cells out of resistant niches or directly 

targeting cells in the resistant niche (modeled by the PD), to render them more 

responsive to treatment interventions.  Interestingly, while this co-culture model is 

admittedly a reductionist view of the BMM, it does somewhat recapitulate normal 

marrow dynamics. Both normal and malignant hematopoietic cells have been shown in 

vivo to migrate between different marrow niches22–24. Movement between the different 

niches is thought to be one mechanism by which HSCs and progenitor cells are either 

maintained, cued to proliferate, or stimulated to differentiate23.  We speculate that while 

the migration in our in vitro system is simple in comparison to that in the BMM, our 

model may provide a tool to study signaling cues that trigger ALL cells to egress from 

the niche spaces. This would be of therapeutic use as mobilization of ALL cells from the 

protected niche may render them more susceptible to chemotherapy intervention.  

We further expanded on the observation that PD ALL cells have increased 

chemotherapy resistance, when compared to their co-cultured counterparts (S and PB 

tumor cells) through experimentation with increased numbers of ALL cell lines and 

cytotoxic agents. In Chapter 3, we describe our observations when ALL cells in media 

alone and in our co-culture model are exposed to three commonly used chemotherapy 

drugs, Ara-C, methotrexate, and vincristine13. We found that in every treatment 
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condition, across multiple tumor cell lines, PD ALL cells had little to no decrease in 

viability relative to untreated controls, and had significantly increased viability compared 

to cells cultured in media alone. Of concern was whether the increase in PD cell survival 

was related to interactions specific to BMSC/HOB, or whether this was the result of a 

generic phenomenon that would be observed related to migration and protection 

beneath any adherent monolayer. Additionally, it is known that uptake of chemotherapy 

drugs by the tumor cell greatly effects the efficacy of the treatment20,25.  To address this 

we established co-cultures using variety of non-bone marrow derived stromal cells. 

While the ALL cells co-cultured with these non-bone marrow derived stromal cells did 

form a PD population, they were not protected from chemotherapy exposure. Moreover, 

our laboratory has previously shown that ALL cells in co-culture have no difference in 

chemotherapy uptake relative to tumor cells grown in media alone26. Together, these 

results suggest that interactions or cues specific to the BMM are responsible for 

signaling that converges on ALL resistance to chemotherapy in our co-culture model.  

As described in Chapter 1, the BMM impacts the hematopoietic cell phenotype in 

a variety ways. One critical function of the BMM is to prevent stem cell exhaustion 

through regulatory signaling that promotes quiescence22,27,28. Due to similarities 

between ALL cells and their normal hematopoietic counterparts, ALL cells are able to 

hijack the normal niches and benefit from their protective signaling29. A significant 

instance of this is the ability of ALL cells to localize to quiescence promoting niches and 

as a result evade chemotherapy intervention. For example, expression of osteopontin in 

the osteoblastic niche has been shown to maintain HSCs in a quiescent state30,31. 

Likewise, Boyerinas et al. found that ALL cells localized to the endosteum and 
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interacted with osteopontin resulting in a quiescent and drug resistant phenotype15. 

Chemotherapy resistance as a result of quiescence is not specific to ALL and it is well 

established that tumor cells in a dormant or quiescent state are responsible for resistant 

disease and relapse events in a variety of malignancies25,32. As such, we sought to 

investigate whether the chemotherapy resistant PD ALL population had an altered cell 

cycle and proliferation profile. We found that PD cells are characterized by an increased 

percentage of cells in G0/G1 and decreased S phase percentage compared to cells in 

media alone13. Additionally, we observed that the PD population had an increase in cells 

in G0 phase, along with a reduction in KI-67 staining relative to media alone controls13. 

These findings suggest that the BMM is promoting a quiescent ALL phenotype, which 

based on previous works is likely contributing to the chemotherapy resistance we 

observed in this population. Again, this model’s ability to mimic well established 

microenvironment paradigms that promote resistant disease further validates its 

usefulness as a tool to model chemotherapy resistant disease in vitro. As we show in 

Chapter 4, it can be used as a platform to investigate the interactions that lead to 

quiescence in ALL cells and inform strategies to disrupt this resistant phenotype.  

Interestingly, in addition to having a quiescent phenotype, we found that PD ALL 

cells have an altered metabolic status compared to ALL cells in media alone culture 

conditions. PD ALL cells appear to have increased glycolytic activity and a reduced 

level of oxidative phosphorylation. Consistent with the observed increase in glycolysis, 

we observed increased protein abundance in hexokinase 1 and 2, which are the first 

rate limiting enzymes of the glycolytic pathway13,33. Additionally, metabolomic analysis 

via mass spectrometry revealed that ALL cells in co-culture have a different metabolite 
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profile compared to media alone ALL cells13. These findings are reminiscent of the 

classically described Warburg effect, where tumor cells are characterized by a 

preferential increase in glucose metabolism over oxidative phosphorylation34. Increased 

glycolysis and altered cellular metabolism have been associated with chemotherapy 

resistance through a variety of proposed mechanisms35. Future work will be needed to 

determine to what extent the observed increase in glycolytic activity has on 

chemotherapy resistance in the PD ALL cells. Moreover, we speculate that in addition to 

the potential for increased resistance, the increase in glycolysis might provide PD ALL 

cells with the ability to increase biomass, “priming” the cells for proliferation when 

released from the microenvironment. This speculation is based on the ability of 

glycolysis intermediates to be used in fatty acid, amino acid, and nucleotide synthesis36. 

A greater understanding of how this increase in glycolysis impacts ALL cell resistance 

and potential contributions to biomass production may provide strategies to target ALL 

cells that have altered metabolic profiles.  

The overall goal of studies presented in Chapters 2 and 3 was to establish and 

characterize an in vitro model, which in part recapitulates dynamic interactions between 

ALL cells and the BMM that promote ALL resistance.  While it is appreciated that murine 

models will remain the standard for investigation of therapeutic agents, our in vitro 

model provides a relatively fast and cost effective method to model resistant ALL. While 

we do not suggest that the PD population of tumor cells in our model are identical to the 

cells that initiate relapse of disease in patients, they are a treatment refractory, 

quiescent population that provides a very valuable tool for investigation of critical anti-
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apoptotic and cell cycle regulatory pathways.  As such, utilizing this system, we 

investigated whether interaction with BMM influences ALL expression of BCL6.  

The goal of the study presented in Chapter 4 was to investigate a fundamental 

gap in knowledge focused on whether BCL6 abundance in ALL cells was affected 

through interaction with the BMM and the consequence of BCL6 levels in terms of tumor 

cell phenotype. BCL6 is a proto-oncogene that was discovered and classically 

described in germinal center biology and cases of DLBCL37–40. BCL6 has been shown 

to promote proliferation in a variety of contexts through the regulation of cell cycle 

regulating proteins such as p27, p21, BLIMP-1, and by rendering cells unresponsive to 

anti-proliferative signals arising from the p19 (ARF)-p53 pathway40–43. Consistently, high 

BCL6 protein expression is associated with rapidly proliferating germinal center B-cells44 

and has been shown to positively correlate with proliferation associated protein Ki-6745. 

Conversely, BCL6 has also been presented as a mediator of cell cycle repression and 

senescence. Nahar et al. demonstrated that BCL6 expression could result in repression 

of MYC leading to cell cycle arrest and quiescence46. Similarly, Ranuncolo et al. found 

that BCL6 could trigger growth arrest and senescence through a p53 dependent 

pathway47. These findings illustrate the complexity and diversity of BCL6 regulation. 

They also highlight the need for studies that explore BCL6 functions through context 

specific experimentation, with focus on normal and tumor microenvironment influences 

that may affect BCL6 driven phenotypes. To this end, this study explored the role BMM 

derived cells have on BCL6 protein abundance in ALL cells. Utilizing our in vitro co-

culture model, we found BMSC and HOB interaction results in decreased BCL6 levels in 

ALL cells48. Furthermore, we show that BCL6 abundance is impacted to the greatest 
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extent in the chemotherapy resistant PD ALL cells48. These findings were striking 

because elevated BCL6 expression in CML and ALL cells has been shown to promote 

chemotherapy resistance through tolerance to DNA damaging stress via repression of 

p53 signaling49,50. This apparent ambiguity lead us to investigate other tumor strategies, 

which can lead to a chemotherapy resistance and that may be influenced by BCL6 

downregulation. As described in the Chapter 3 study, we found that the resistant PD 

population was characterized by a quiescent phenotype13. Consistent with this 

observation and the known function of BCL6 as a driver of proliferation, we found that 

inhibition of BCL6 in our hands lead to diminished proliferation and blunted cell cycle 

progression in ALL cells, with overexpression leading to the reverse phenotype48. 

Additionally, we discovered that cyclin D3 protein abundance was regulated 

downstream of BCL6 inhibition or overexpression48. These findings are significant as 

cyclin D3 has been shown to be a key regulator of B-cell progression through the G1 

phase of cell cycle51–53. Together, these findings point to microenvironment 

downregulation of BCL6 as a mechanism to blunt ALL cell cycle progression and 

subsequent chemotherapy resistance through induction of a quiescent phenotype.  

Due to the fact that many chemotherapy regimens target dividing cells, standard 

treatments are often less effective against quiescent tumor populations25,32. Based on 

this premise, one goal of this study was to investigate strategies to improve the efficacy 

of chemotherapy treatments against quiescent ALL cells in the BMM. With the findings 

that PD ALL cells have a quiescent phenotype, which is in part mediated through BMSC 

and HOB driven reduction of BCL6 protein abundance in ALL cells, we sought to 

determine whether combination strategies aimed at chronically increasing BCL6 would 
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sensitize ALL cells to chemotherapy. To this end, we found that chronic constitutive 

BCL6 expression lead to increased sensitivity of ALL cells to chemotherapy exposure48. 

Additionally, we investigated MG132 and caffeine exposure as an approach to 

chemically modulate BCL6 expression in ALL cells. Both MG132 and caffeine have 

been shown to stabilize BCL6 expression through repression of pathways (proteasome 

and ATM/ATR inhibition respectively) that lead to proteasomal mediated degradation of 

BCL648,54. Consistent with these observations, we found that exposure to MG132 or 

caffeine increased protein abundance of BCL6 in ALL cells, and that both drugs were 

able to increase BCL6 expression in target PD ALL cells48. Employing these two drugs 

to chronically increase BCL6 in the PD population, we discovered that combination 

treatment with chemotherapy resulted in sensitization of PD ALL cell compared to 

chemotherapy only treated groups48. While it is appreciated that neither MG132 or 

caffeine specifically target BCL6, they both represent a tool to sensitize ALL resistant 

ALL cells to chemotherapy, which is in part mediated through their influence on BCL6 

expression. Based on these encouraging in vitro results, we investigated both MG132 

and caffeine as sensitization agents in a murine model of ALL disease.  In these 

studies, we found that caffeine treatment in combination with Ara-C significantly 

increased the event free survival of mice compared to treatment with chemotherapy 

alone48. Again, while caffeine is not likely acting through BCL6 modulation exclusively, it 

does appear to be useful in sensitizing ALL cells to chemotherapy. These findings in 

concert with the results of the in vitro studies supports further investigation of BCL6 

modulation and caffeine treatment as potential approaches to target resistant ALL 

disease. We speculate that caffeine treatment might be a beneficial addition to 
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consolidation regimens to potentially bring quiescent residual tumor cells into cycle so 

that they may be more effectively targeted by chemotherapy. Overall, the findings of the 

study presented in Chapter 4 begin to address the lack of understanding of how the 

BMM influences ALL expression of BCL6. We hope that this study will provide a 

springboard for further investigations into context specific BMM regulation of BCL6 and 

inform potential treatment strategies targeting resistance in the marrow niche.     

The studies presented herein further advance the field of ALL research through 

establishment of an in vitro co-culture model in which BMM supported and 

chemotherapy resistant disease can be further investigated. To our knowledge, this 

work represents the first time that BMM influence on ALL BCL6 protein abundance has 

been investigated. The presented studies show the progression from establishment of 

the in vitro model, to its use in the investigation of BCL6 as a mechanism of 

chemotherapy resistance in ALL cells, and finally its ability to provide a platform for 

investigations which informed the treatment strategies used in our in vivo murine 

studies. We envision that future work will be able to build upon this research in a variety 

of ways. For example, the observation that the PD ALL cells have increased glycolytic 

activity will require additional investigation to determine the impact of this altered 

metabolism on resistant disease and potential for relapse. Additionally, it will be critical 

to expand on the findings surrounding BCL6 modulation downstream of the BMM. A 

mechanistic insight into how this modulation is mediated may provide additional targets 

for sensitization strategies against refractory ALL. Moreover, it will be important to gain 

a better understanding of the cellular context in which BCL6 is altered in ALL cells, as 

changes in pathways such as p53, ATM/ATR, PI3K, and BCL family proteins can 
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dramatically affect BCL6’s regulation of cell phenotype as highlighted above. Finally, the 

observation that caffeine sensitizes ALL cells to chemotherapy warrants further 

investigation. Caffeine’s long history of safe use in humans and our observation of its 

use as a sensitizing agent give it the potential to become an attractive addition to the 

current treatment regimens. In this way, we are hopeful that this work will fit into the 

long history of successful additions to the combination treatment advances that first 

began to improve outcomes in ALL patients of the corporative children’s groups of the 

1950’s. Finally, we are optimistic that this work, as well as those similarly investigating 

strategies to disrupt bone marrow microenvironment protection of ALL, will provide the 

final brick in the long road to curing this once uniformly fatal disease.    
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